Advertisement

Partially Nested Hierarchical Refinement of Bivariate Tensor-Product Splines with Highest Order Smoothness

  • Nora Engleitner
  • Bert JüttlerEmail author
  • Urška Zore
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10521)

Abstract

The established construction of hierarchical B-splines starts from a given sequence of nested spline spaces. In this paper we generalize this approach to sequences formed by spaces that are only partially nested. This enables us to choose from a greater variety of refinement options while constructing the underlying grid. We identify assumptions that allow to define a hierarchical spline basis, to establish a truncation mechanism, and to derive a completeness result. Finally, we present an application to surface approximation that demonstrates the potential of the proposed generalization.

Keywords

Tensor-product B-splines Hierarchical B-splines Adaptive refinement 

Notes

Acknowledgment

Supported by project NFN S117 “Geometry + Simulation” of the Austrian Science Fund and the EC projects “EXAMPLE”, GA no. 324340 and “MOTOR”, GA no. 678727.

References

  1. 1.
    Bornemann, P.B., Cirak, F.: A subdivision-based implementation of the hierarchical B-spline finite element method. Comput. Methods Appl. Mech. Eng. 253, 584–598 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Buffa, A., Giannelli, C.: Adaptive isogeometric methods with hierarchical splines: error estimator and convergence. Math. Methods Appl. Sci. 26, 1–25 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Dokken, T., Lyche, T., Pettersen, K.F.: Polynomial splines over locally refined box-partitions. Comput. Aided Geom. Des. 30, 331–356 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Engleitner, N., Jüttler, B.: Patchwork B-spline refinement. In: Computer-Aided Design, vol. 90, pp. 168–179 (2017). ISSN 0010-4485. https://doi.org/10.1016/j.cad.2017.05.021
  5. 5.
    Evans, E.J., Scott, M.A., Li, X., Thomas, D.C.: Hierarchical T-splines: analysis-suitability, Bézier extraction, and application as an adaptive basis for isogeometric analysis. Comput. Methods Appl. Mech. Eng. 284, 1–20 (2015)CrossRefGoogle Scholar
  6. 6.
    Forsey, D.R., Bartels, R.H.: Hierarchical B-spline refinement. Comput. Graph. 22, 205–212 (1988)CrossRefGoogle Scholar
  7. 7.
    Giannelli, C., Jüttler, B., Kleiss, S.K., Mantzaflaris, A., Simeon, B., Špeh, J.: THB-splines: an effective mathematical technology for adaptive refinement in geometric design and isogeometric analysis. Comput. Methods Appl. Mech. Eng. 299, 337–365 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Giannelli, C., Jüttler, B., Speleers, H.: THB-splines: the truncated basis for hierarchical splines. Comput. Aided Geom. Des. 29, 485–498 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Giannelli, C., Jüttler, B., Speleers, H.: Strongly stable bases for adaptively refined multilevel spline spaces. Adv. Comput. Math. 40(2), 459–490 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Greiner, G., Hormann, K.: Interpolating and approximating scattered 3D-data with hierarchical tensor product B-splines. In: Le Méhauté, A., Rabut, C., Schumaker, L.L. (eds.) Surface Fitting and Multiresolution Methods. Innovations in Applied Mathematics, pp. 163–172. Vanderbilt University Press, Nashville (1997)Google Scholar
  11. 11.
    Kang, H., Chen, F., Deng, J.: Hierarchical B-splines on regular triangular partitions. Graph. Models 76(5), 289–300 (2014)CrossRefGoogle Scholar
  12. 12.
    Kiss, G., Giannelli, C., Zore, U., Jüttler, B., Großmann, D., Barner, J.: Adaptive CAD model (re-)construction with THB-splines. Graph. Models 76(5), 273–288 (2014)CrossRefGoogle Scholar
  13. 13.
    Kosinka, J., Sabin, M., Dodgson, N.: Subdivision surfaces with creases and truncated multiple knot lines. Comput. Graph. Forum 23, 118–128 (2014)CrossRefGoogle Scholar
  14. 14.
    Kraft, R.: Adaptive und linear unabhängige Multilevel B-Splines und ihre Anwendungen. Ph.D. thesis, Universität Stuttgart (1998)Google Scholar
  15. 15.
    Kuru, G., Verhoosel, C.V., van der Zeeb, K.G., van Brummelen, E.H.: Goal-adaptive isogeometric analysis with hierarchical splines. Comput. Methods Appl. Mech. Eng. 270, 270–292 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Li, X., Chen, F.L., Kang, H.M., Deng, J.S.: A survey on the local refinable splines. Sci. China Math. 59(4), 617–644 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Li, X., Deng, J., Chen, F.: Polynomial splines over general T-meshes. Visual Comput. 26, 277–286 (2010)CrossRefGoogle Scholar
  18. 18.
    Li, X., Zheng, J., Sederberg, T.W., Hughes, T.J.R., Scott, M.A.: On linear independence of T-spline blending functions. Comput. Aided Geom. Des. 29, 63–76 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Mokriš, D., Jüttler, B., Giannelli, C.: On the completeness of hierarchical tensor-product B-splines. J. Comput. Appl. Math. 271, 53–70 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Schillinger, D., Dedé, L., Scott, M.A., Evans, J.A., Borden, M.J., Rank, E., Hughes, T.J.R.: An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Comput. Methods Appl. Mech. Eng. 249–252, 116–150 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Speleers, H., Dierckx, P., Vandewalle, S.: Quasi-hierarchical Powell-Sabin B-splines. Comput. Aided Geom. Des. 26, 174–191 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Speleers, H., Manni, C.: Effortless quasi-interpolation in hierarchical spaces. Numer. Math. 132(1), 155–184 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Wei, X., Zhang, Y., Hughes, T.J.R., Scott, M.A.: Extended truncated hierarchical Catmull-Clark subdivision. Comput. Methods Appl. Mech. Eng. 299, 316–336 (2016)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Zore, U., Jüttler, B.: Adaptively refined multilevel spline spaces from generating systems. Comput. Aided Geom. Des. 31, 545–566 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Zore, U., Jüttler, B., Kosinka, J.: On the linear independence of truncated hierarchical generating systems. J. Comput. Appl. Math. 306, 200–216 (2016)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Applied GeometryJohannes Kepler UniversityLinzAustria

Personalised recommendations