Advertisement

BIMROB – Bidirectional Interaction Between Human and Robot for the Learning of Movements

  • Gerrit Kollegger
  • Marco Ewerton
  • Josef Wiemeyer
  • Jan Peters
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 663)

Abstract

The overlap between the workspaces of humans and robots has been increasing in the last decades. Situations in which humans interact with robots are becoming more frequent. The uni- and bidirectional interactions of humans and robots when learning movements have so far not been adequately investigated. The presented studies investigate the unidirectional interaction of humans and robots in different settings. Results present first indications for an efficient and effective interaction configuration of a bidirectional interaction between human and robot for the learning of movements and to combine their advantages of humans and robots.

Keywords

Human-robot-interaction Dyad learning Motor learning 

References

  1. 1.
    Lens, T., von Stryk, O.: Design and dynamics model of a lightweight series elastic tendon-driven robot arm. In: 2013 IEEE International Conference on Robotics and Automation (ICRA). IEEE (2013)Google Scholar
  2. 2.
    Lens, T., Kunz, J., Von Stryk, O., Trommer, C., Karguth, A.: Biorob-arm: a quickly deployable and intrinsically safe, light-weight robot arm for service robotics applications. In: 2010 41st International Symposium on Robotics (ISR) and 2010 6th German Conference on Robotics (ROBOTIK), VDE, pp. 1–6 (2010)Google Scholar
  3. 3.
    Kollegger, G., Ewerton, M., Peters, J., Wiemeyer, J.: Bidirektionale Interaktion zwischen Mensch und Roboter beim Bewegungslernen (BIMROB). In: Witte, K., Edelmann-Nusser, J. (Hrsg.) Sportinformatik XI. Jahrestagung der dvs-Sektion Sportinformatik vom, Magdeburg, 14–16 September 2016, (2016)Google Scholar
  4. 4.
    Granados, C.: The Effects of observation, dialogue, and attentional focus in dyadic training protocol. Master thesis, University of Nevada, Las Vegas [Online-Version] (2010)Google Scholar
  5. 5.
    Ishikura, T., Inomata, K.: Effects of angle of model-demonstration on learning of motor skill. Percept. Mot. Skills 80(2), 651–658 (1995)CrossRefGoogle Scholar
  6. 6.
    Poolton, J.M., Maxwell, J., Masters, R., Raab, M.: Benefits of an external focus of attention: Common coding or conscious processing? J. Sports Sci. 24(1), 89–99 (2006)CrossRefGoogle Scholar
  7. 7.
    Dietz, M., Dominiak, A., Wiemeyer, J.: Computer-based methods to assess spatial abilities. In: Baca, A., Stöckl, M. (eds.) Sportinformatik X, pp. 93–99. Feldhaus, Hamburg (2015)Google Scholar
  8. 8.
    Ewerton, M., Neumann, G., Lioutikov, R., Amor, H., Peters, J., Guilherme, M.: Learning multiple collaborative tasks with a mixture of interaction primitives. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 1535–1542. IEEE (2015)Google Scholar
  9. 9.
    Ewerton, M., Guilherme, M., Peters, J., Neumann, G.: Learning motor skills from partially observed movements executed at different speeds. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 456–463. IEEE (2015)Google Scholar
  10. 10.
    Ewerton, M., Guilherme, M., Neumann, G., Kisner, V., Kollegger, G., Wiemeyer, J., Peters, J.: Movement primitives with multiple phase parameters. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 201–206. IEEE (2016)Google Scholar
  11. 11.
    Ewerton, M., Maeda, G., Kollegger, G., Wiemeyer, J., Peters, J.: Incremental imitation learning of context-dependent motor skills. In: 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids), pp. 351–358. IEEE (2016)Google Scholar
  12. 12.
    Emken, J.L., Reinkensmeyer, D.J.: Robot-enhanced motor learning: accelerating internal model formation during locomotion by transient dynamic amplification. IEEE Trans. Neural Syst. Rehabil. Eng. 13(1), 33–39 (2005)CrossRefGoogle Scholar
  13. 13.
    Mueller, H., Brückner, S., Panzer, S., Blischke, K.: Correcting errors in the presence of noise in the motor system: a formal model and first data. In: 6th Annual Congress of the European College of Sport Science - 15th Congress of the German Society of Sport Science, p. 129 (2001)Google Scholar
  14. 14.
    Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 26(1), 43–49 (1978)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Gerrit Kollegger
    • 1
  • Marco Ewerton
    • 2
  • Josef Wiemeyer
    • 1
  • Jan Peters
    • 2
  1. 1.Institute for Sport ScienceTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Intelligent Autonomous Systems Computer Science DepartmentTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations