Development of an Autonomous Character in Karate Kumite

  • Katharina PetriEmail author
  • Kerstin Witte
  • Nicole Bandow
  • Peter Emmermacher
  • Steffen Masik
  • Marco Dannenberg
  • Simon Salb
  • Liang Zhang
  • Guido Brunnett
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 663)


Virtual Reality (VR) has become common practice in the field of sports, but autonomous virtual environment (VE) systems, especially in fast reacting sports, are rare. The current study demonstrates the development of an autonomous character (AC) in karate kumite, which performs attacks against a freely moving, real athlete. The development of the AC consists of four steps: selection of relevant karate techniques, development of a decision system, creation of an animated model of the AC, and the evaluation. A Cave Automatic Virtual Environment (CAVE) and a Head Mounted Display (HMD) were chosen for the VE. The evaluation of the AC in the VEs was conducted by expert interviews (n = 6). The results reveal a feeling of comfort for all athletes in VR which underpins a high degree of realism in the VEs. Moreover, the HMDs are seen as more suitable than CAVEs for presenting a karate specific environment. Based on these results the developed AC seems applicable for anticipation research and training in karate kumite. The discussion includes further possible improvements for the AC as well as future directions for further investigations and training programs using the AC. Moreover, the procedure of the AC’s creation can be transferred to other sports.


Virtual reality Autonomous character Karate kumite 



This work was supported by the German Research Foundation (DFG), WI 1456/17-1.


  1. 1.
    Aleshin, V., Afanasiev, V., Bobkov, A., Klimenko, S., Kuliev, V., Novgorodtsev, D.: Visual 3D perception of motion environment and visibility factors in virtual space. In: Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J.M., Mattern, F., Mitchell, J.C., Tan, C.J.K. (eds.) Transactions on Computational Science XVI. Lecture Notes in Computer Science, pp. 17–33. Springer, Heidelberg (2012)Google Scholar
  2. 2.
    Argelaguet, F., Andujar, C.: A survey of 3D object selection techniques for virtual environments. Comput. Graph. 37, 121–136 (2013)CrossRefGoogle Scholar
  3. 3.
    Argelaguet Sanz, F., Multon, F., Lécuyer, A.: A methodology for introducing competitive anxiety and pressure in VR sports training. Front. Robot. AI 2, 10 (2015). doi: 10.3389/frobt.2015.00010 CrossRefGoogle Scholar
  4. 4.
    Bandow, N., Emmermacher, P., Stucke, C., Masik, S., Witte, K.: Comparison of a video and a virtual based environment using the temporal and spatial occlusion technique for studying anticipation in karate. International J. Comput. Sci. Sport, 13, 44–56 (2014)Google Scholar
  5. 5.
    Bandow, N., Witte, K., Masik, S.: Development and evaluation of a virtual test environment for performing reaction tasks. Int. J. Comput. Sci. Sport, 11, 4–15 (2012)Google Scholar
  6. 6.
    Bideau, B., Kulpa, R., Ménardais, S., Multon, F., Delamarche, P., Arnaldi, B.: Real handball goalkeeper vs. virtual handball thrower. Presence 12(4), 411–421 (2003)CrossRefGoogle Scholar
  7. 7.
    Bideau, B., Multon, F., Kulpa, R., Fradet, L., Arnaldi, B., Delamarche, P.: Using virtual reality to analyze links between handball thrower kinematics and goalkeepers reactions. Neurosci. Lett. 372, 119–122 (2004)CrossRefGoogle Scholar
  8. 8.
    Brand, J., Piccirelli, M., Hepp-reymond, M.-C., Morari, M., Michels, L., Eng, K.: Virtual hand feedback reduces reaction time in an interactive finger reaching task. PLoS ONE 1(5), e0154807 (2016). doi: 10.1371/journal.pone.0154807 CrossRefGoogle Scholar
  9. 9.
    Brault, S., Bideau, B., Kulpa, R., Craig, C.M.: Detecting deception in movement: the case of the side-step in rugby. PLoS ONE 7(6), e37494 (2012). doi: 10.1371/journal.pone.0037494 CrossRefGoogle Scholar
  10. 10.
    Brunnett, G., Rusdorf, S., Lorenz, M.: V-Pong: An Immersive Table Tennis Simulation. IEEE Comput. Graph. Appl. 26(4), 10–13 (2006)CrossRefGoogle Scholar
  11. 11.
    Chan, J.C.P., Leung, H., Tang, J.K.T., Komura, T.: A virtual reality dance training system using motion capture technology. IEEE Trans. Learn. Technol. 4(2), 187–195 (2011). doi: 10.1109/TLT.2010.27 CrossRefGoogle Scholar
  12. 12.
    Chi, E.H., Song, J., Corbin, G.: “Killer app” of wearable computing: wireless force sensing body protectors for martial arts. In: ACM International Conference on Human Factors in Computing Systems, Vienna, Austria, pp. 24–29 (2004)Google Scholar
  13. 13.
    Covaci, A., Olivier, A.H., Multon, F.: Third person view and guidance for more natural motor behaviour in immersive basketball playing. In: Proceedings of the 20th ACM Symposium on Virtual Reality Software and Technology, pp. 55–64 (2015)Google Scholar
  14. 14.
    Covaci, A., Olivier, A.H., Multon, F.: Visual perspektive and feedback guidance for VR free-throw training. IEEE Comput. Graph. Appl. 35(5), 55–65 (2015). doi: 10.1109/MCG.2015.95 CrossRefGoogle Scholar
  15. 15.
    Craig, C.M., Bastin, J., Montagne, G.: How information guides movement: Intercepting curved free kicks in soccer. Hum. Mov. Sci. 30(5), 931–941 (2011). doi: 10.1016/j.humov.2010.08.007 CrossRefGoogle Scholar
  16. 16.
    de Kok, I., Hough, J., Hülsmann, F., Waltemate, T., Botsch, M., Schlangen, D., Kopp, S.: Demonstrating the dialogue system of the intelligent coaching space. In: SemDial (GODIAL), Gothenburg (2015)Google Scholar
  17. 17.
    Dhawan, A., Cummins, A., Spratford, W., Dessing, J.C., Craig, C.: Development of a novel immersive interactive virtual reality cricket simulator for cricket batting. In: Proceedings of the 10th International Symposium on Computer Science in Sports (ISCSS). Advances in Intelligent Systems and Computing, vol. 392 (2016). doi: 10.1007/978-3-319-24560-7_26
  18. 18.
    Föhl, S., Grosse-Brockhoff, H., Weidensdorfer, R.: Auswertung der leitfadengestützen Experteninterviews und der Workshopreihe “Thementische” im Rahmen der Kulturentwicklung für die Stadt Dessau-Roßlau [Evaluation of guideline based expert interviews and of the workshop series “topic desks” for culture development of the town Dessau-Rosslau], Dessau-Roßlau (2012)Google Scholar
  19. 19.
    Hülsmann, F., Frank, C., Schack, T., Kopp, S., Botsch, M.: Multi-level analysis of motor actions as a basis for effective coaching in virtual reality. In: Proceedings of the 10th International Symposium on Computer Science in Sports (ISCSS). Advances in Intelligent Systems and Computing, vol. 392, pp. 211–214. Springer International Publishing, Cham (2016)Google Scholar
  20. 20.
    Kelly, P., Healy, A., Moran, K., O’Connor, N.E.: A virtual coaching environment for improving golf swing technique. In: Proceedings of the ACM Workshop on Surreal Media and Virtual Cloning (SMVC 2010), Florence, Italy, pp. 51–56. ACM Press, New York (2010)Google Scholar
  21. 21.
    Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lilienthal, M.G.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3(3), 203–220 (1993). doi: 10.1207/s15327108ijap03033 CrossRefGoogle Scholar
  22. 22.
    Kojima, T., Hiyama, A., Miura, T., Hirose, M.: Training archived physical skill through immersive virtual environment. In: Human Interface and the Management of Information. Information and Knowledge in Applications and Services. Lecture Notes in Computer Science, pp. 51–58. Springer International Publishing, Cham (2014)Google Scholar
  23. 23.
    LaViola Jr., J.J.: A discussion of cybersickness in virtual environments. ACM SIGCHI Bull. 32(1), 47–56 (2000)CrossRefGoogle Scholar
  24. 24.
    Lugrin, J.-L., Latt, J., Latoschik, M.E.: Avatar anthropomorphism and illusion of body ownership in VR. In: IEEE Virtual Reality Conference 2015, Arles, France (2015)Google Scholar
  25. 25.
    Mieg, H.A., Näf, M.: Experteninterviews [expert interviews] (2.Aufl.), Institut für Mensch-Umwelt-Systeme (HES), ETH Zürich (2005)Google Scholar
  26. 26.
    Miles, H.C., Pop, S.R., Watt, S.J., Lawrence, G.P., John, N.W., Perrot, V., Mallet, P., Mestre, D.R., Morgan, K.: Efficacy of a virtual environment for training ball passing skills in rugby. In: Transactions on Computational Science XXIII, pp. 98–117. Springer, Heidelberg (2014)Google Scholar
  27. 27.
    Miles, H.C., Pop, S.R., Watt, S.J., Lawrence, G.P., John, N.W.: A review of virtual environments for training in ball sports. Comput. Graph. 36, 714–726 (2012)CrossRefGoogle Scholar
  28. 28.
    Mudric, R., Rankovic, V.: Analysis of hand techniques in karate. SPORT Sci. Pract. 6(1–2), 47–74 (2016)Google Scholar
  29. 29.
    Müller, S., Abernethy, B.: Expert anticipatory skill in striking sports: a review and a model. Res. Q. Exerc. Sports Phys. Educ. Recreation Dance 83(2), 175–187 (2012)Google Scholar
  30. 30.
    Müller, S., Brenton, J., Dempsey, A.R., Harbaugh, A.G., Reid, C.: Individual differences in highly skilled visual perceptual-motor striking skill. Attention Percept. Psychophysics 77, 1726–1736 (2015). doi: 10.3758/s13414-015-0876-7 CrossRefGoogle Scholar
  31. 31.
    Petri, K., Bandow, N., Emmermacher, P., Schrumpf, R., Masik, S., Zhang, L., Kronfeld, T., Brunnett, G., Witte, K.: Entwicklung eines Regelwerks für einen autonom interagierenden Gegner in einer Virtual-Reality-Umgebung (VR) zur Untersuchung der Antizipationsfähigkeit im Karate-Kumite [Development of a decision system for an autonomous interacting character in a virtual reality environment for studying anticipation in karate kumite]. Shaker Verlag (2015). ISBN: 978-3-8440-3974-0Google Scholar
  32. 32.
    Petri, K., Lichtenstein, M., Bandow, N., Campe, S., Wechselberger, M., Sprenger, D., Kaczmarek, F., Emmermacher, P., Witte, K.: Analysis of anticipation by 3D motion capturing – a new method presented in karate kumite. J. Sport Sci. 35, 130–135 (2016). doi: 10.1080/02640414.2016.1158851 CrossRefGoogle Scholar
  33. 33.
    Pinder, R.A., Davids, K., Renshaw, I., Araùjo, D.: Representative learning design and functionality of research and practice in sport. J. Sport Exerc. Psychol. 33(1), 146–155 (2011)CrossRefGoogle Scholar
  34. 34.
    Pronost, N., Weidong Geng, Q.L, Domont, G., Multon, F., Kulpa, R.: Interactive animation of virtual characters: application to virtual kung-fu fighting (2008). doi: 10.1109/CW.2008.33
  35. 35.
    Ranganathan, R., Carlton, L.G.: Perception–action coupling and anticipatory performance in baseball batting. J. Motor Behav. 39(5), 369–380 (2007)CrossRefGoogle Scholar
  36. 36.
    Rebenitsch, L., Owen, C.: Review on cybersickness in applications and visual displays. Virtual Reality 20(2), 101–125 (2016)CrossRefGoogle Scholar
  37. 37.
    Renner, R.S., Velichkovsky, B.M., Helmert, J.R.: The perception of egocentric distances in Virtual Environments – a Review. ACM Computing Surveys (CSUR), 46(2), 38 pages (2013). Article Number: 23, doi: 10.1145/2543581.2543590
  38. 38.
    Ruffaldi, E., Filippeschi, A.: Structuring a virtual environment for sport training: a case study on rowing technique. Robot. Auton. Syst. 61, 390–397 (2013)CrossRefGoogle Scholar
  39. 39.
    Salb, S., Splitt, M., Bandow, N., Witte, K.: The influence of spatial occlusion on visual search behavior of karate athletes. In: Proceedings of the 2nd International Workshop on Solutions for Automatic Gaze Data Analysis 2015 (SAGA) (2015)Google Scholar
  40. 40.
    Schubert, T.W., Friedmann, F., Regenbrecht, H.T.: Decomposing the sense of presence: factor analytic insights. Presented at the 2nd International Workshop on Presence, University of Essex, UK (1999)Google Scholar
  41. 41.
    Schuemie, M.J., van der Straaten, P., Krijn, M., van der Mast, C.A.P.G.: Research on presence in virtual reality: a survey. Cyber Psychol. Behav. 4(2), 183–201 (2001)CrossRefGoogle Scholar
  42. 42.
    Sigrist, R., Rauter, G., Marchal-Crespo, L., Riener, R., Wolf, P.: Sonification and haptic feedback in addition to visual feedback enhances complex motor task learning. Exp. Brain Res. 233(3), 909–925 (2015). doi: 10.1007/s00221-014-4167-7 CrossRefGoogle Scholar
  43. 43.
    Skulmowski, A., Pradel, S., Kühnert, T., Brunnett, G., Rey, G.D.: Embodies learning using a tangible user interface: the effects of haptic perception and selective pointing on a spatial learning task. Comput. Educ. 92–93, 64–75 (2016). doi: 10.1016/j.compedu.2015.10.011 CrossRefGoogle Scholar
  44. 44.
    Tanaka, K., Hasegawa, M., Kataoka, T., Katz, L.: The effect of self-position and posture information on reaction time. Int. J. Comput. Sci. Sport 9, 4–14 (2010)Google Scholar
  45. 45.
    Triberti, S., Riva, G.: Being present in action: a theoretical model about the “Interlocking” between intentions and environmental affordances. Front. Psychol. 6, 2052 (2016). doi: 10.3389/fpsyg.201502052 CrossRefGoogle Scholar
  46. 46.
    Vignais, N., Bideau, B., Craig, C., Brault, S., Multon, F., Delamarche, P., Kulpa, R.: Does the level of graphical detail of a virtual handball thrower influence goalkeeper’s motor response? J. Sports Sci. Med. 8, 501–508 (2009)Google Scholar
  47. 47.
    Waltemate, T., Hülsmann, F., Pfeiffer, T., Kopp, S., Botsch, M.: Realizing a low-latency virtual reality environment for motor learning. In: Proceedings of ACM Symposium on Virtual Reality Software and Technology, pp. 139–147. ACM (2015)Google Scholar
  48. 48.
    Wang, J.: Research on application of virtual reality technology in competitive sports. Procedia Eng. 29, 3659–3662 (2012)CrossRefGoogle Scholar
  49. 49.
    Zaal, F.T.J.M., Bootsma, R.J.: Virtual reality as a tool for the study of perception-action: the case of running to catch fly balls. Presence Teleoperators Virtual Environ. 20(1), 93–103 (2011). doi: 10.1162/pres_a_00037 CrossRefGoogle Scholar
  50. 50.
    Zhang, L., Brunnett, G., Petri, K., Danneberg, M., Masik, S., Bandow, N., Witte, K.: AMArC: an autonomously interacting character for investigating anticipation in martial arts. Comput. Graph. (submitted)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Katharina Petri
    • 1
    Email author
  • Kerstin Witte
    • 1
  • Nicole Bandow
    • 1
  • Peter Emmermacher
    • 1
  • Steffen Masik
    • 2
  • Marco Dannenberg
    • 2
  • Simon Salb
    • 1
  • Liang Zhang
    • 3
  • Guido Brunnett
    • 3
  1. 1.Otto-von-Guericke-University MagdeburgMagdeburgGermany
  2. 2.Fraunhofer IFF Magdeburg’s Virtual Development and Training Centre VDTCMagdeburgGermany
  3. 3.Chemnitz University of TechnologyChemnitzGermany

Personalised recommendations