Advertisement

Expressing the Notion of a Mathematical Structure in the Formal Language of Mizar

  • Adam Grabowski
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 659)

Abstract

In the paper, the problem with the translation of ordinary mathematical structures from the natural language into the formal one is identified. As a concrete example of the system I used the Mizar system, the interactive proof assistant for the formalization of mathematics. Chosen testbed, both for new developments, and for revising old ones, was the theory of \(\mathbb Z\)-modules.

Keywords

Formal language Mathematical knowledge management Mizar 

References

  1. 1.
    Bancerek, G., Byliński, C., Grabowski, A., Korniłowicz, A., Matuszewski, R., Naumowicz, A., Pa̧k, K., Urban, J.: Mizar: state-of-the-art and beyond. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015, vol. 9150, pp. 261–279. Springer, Washington, DC (2015). doi: 10.1007/978-3-319-20615-8_17
  2. 2.
    Futa, Y., Okazaki, H., Shidama, Y.: \(\mathbb{Z}\)-modules. Formaliz. Math. 20(1), 47–59 (2012). doi: 10.2478/v10037-012-0007-z zbMATHGoogle Scholar
  3. 3.
    Futa, Y., Shidama, Y.: Lattice of \(\mathbb{Z}\)-module. Formaliz. Math. 24(1), 49–68 (2016). doi: 10.1515/forma-2016-0005 zbMATHGoogle Scholar
  4. 4.
    Gonthier, G., et al.: A machine-checked proof of the odd order theorem. In: ITP 2013, pp. 163–179. Springer, Rennes (2013). doi: 10.1007/978-3-642-39634-2_14
  5. 5.
    Grabowski, A.: Automated discovery of properties of rough sets. Fundam. Inf. 128(1–2), 65–79 (2013). doi: 10.3233/FI-2013-933 MathSciNetzbMATHGoogle Scholar
  6. 6.
    Grabowski, A.: Efficient rough set theory merging. Fundam. Inf. 135(4), 371–385 (2014). doi: 10.3233/FI-2014-1129 MathSciNetzbMATHGoogle Scholar
  7. 7.
    Grabowski, A.: Mechanizing complemented lattices within Mizar type system. J. Autom. Reason. 55(3), 211–221 (2015). doi: 10.1007/s10817-015-9333-5 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Grabowski, A.: Lattice theory for rough sets - a case study with Mizar. Fundam. Inf. 147(2–3), 219–236 (2016). doi: 10.3233/FI-2016-1406 MathSciNetGoogle Scholar
  9. 9.
    Grabowski, A., Korniłowicz, A., Naumowicz, A.: Four decades of Mizar. J. Autom. Reason. 55(3), 191–198 (2015). doi: 10.1007/s10817-015-9345-1 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Grabowski, A., Korniłowicz, A., Schwarzweller, C.: On algebraic hierarchies in mathematical repository of Mizar. In: Ganzha, M., et al. (eds.) FedCSIS 2016, vol. 8, pp. 363–371. IEEE, Gdansk (2016). doi: 10.15439/2016F520 CrossRefGoogle Scholar
  11. 11.
    Grabowski, A., Schwarzweller, C.: Revisions as an essential tool to maintain mathematical repositories. In: MKM 2007, pp. 235–249. Springer, Hagenberg (2007). doi: 10.1007/978-3-540-73086-6_20
  12. 12.
    Heras, J., Martín-Mateos, F.J., Pascual, V.: Modelling algebraic structures and morphisms in ACL2. Appl. Algebra Eng. Commun. Comput. 26(3), 277–303 (2015). doi: 10.1007/s00200-015-0252-9 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Iancu, M., Kohlhase, M., Rabe, F., Urban, J.: The Mizar mathematical library in OMDoc: translation and applications. J. Autom. Reason. 50(2), 191–202 (2013). doi: 10.1007/s10817-012-9271-4 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Korniłowicz, A.: Flexary connectives in Mizar. Comput. Lang. Syst. Struct. 44, 238–250 (2015). doi: 10.1016/j.cl.2015.07.002 Google Scholar
  15. 15.
    Naumowicz, A.: Automating Boolean set operations in Mizar proof checking with the aid of an external SAT solver. J. Autom. Reason. 55(3), 285–294 (2015). doi: 10.1007/s10817-015-9332-6 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Pa̧k, K.: Improving legibility of formal proofs based on the close reference principle is NP-hard. J. Autom. Reason. 55(3), 295–306 (2015). doi: 10.1007/s10817-015-9337-1 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Trybulec, A., Korniłowicz, A., Naumowicz, A., Kuperberg, K.: Formal mathematics for mathematicians. J. Autom. Reason. 50(2), 119–121 (2013). doi: 10.1007/s10817-012-9268-z CrossRefGoogle Scholar
  18. 18.
    Urban, J., Rudnicki, P., Sutcliffe, G.: ATP and presentation service for Mizar formalizations. J. Autom. Reason. 50(2), 229–241 (2013). doi: 10.1007/s10817-012-9269-y MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gierz, G., et al.: A Compendium of Continuous Lattices. Springer, Heidelberg (1980)CrossRefzbMATHGoogle Scholar
  20. 20.
    Pawlak, Z.: Rough sets. Int. J. Parallel Program. 11(5), 341–356 (1982)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of InformaticsUniversity of BiałystokBiałystokPoland

Personalised recommendations