Advertisement

Modeling Quantized Coefficients with Generalized Gaussian Distribution with Exponent 1 / m, \(m=2,3,\ldots \)

  • Robert KrupińskiEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 659)

Abstract

The different types of signals in the image and signal processing applications can be modeled with generalized Gaussian distribution (GGD). When limiting to the special cases, then the closed form equations can be determined. The special cases with the exponents \(p=2\) (Gaussian distribution), \(p=1\) (Laplacian distribution), \(p=1/2\) and \(p=1/3\) are considered in literature. In the article, more general approach for the exponents 1 / m, \(m=2,3,\ldots \) is analyzed, which are related to the peaky shapes of GGD. The maximum likelihood method for a discrete random variable is derived for this subclass of distributions.

Keywords

Estimation Generalized Gaussian distribution Maximum likelihood method Centroid reconstruction 

References

  1. 1.
    Chapeau-Blondeau, F., Monir, A.: Numerical evaluation of the lambert w function and application to generation of generalized gaussian noise with exponent 1/2. IEEE Trans. Signal Process. 50(9), 2160–2165 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Clarke, R.J.: Transform Coding of Images. Academic Press, New York (1985)Google Scholar
  3. 3.
    Du, Y.: Ein sphärisch invariantes verbunddichtemodell für bildsignale. Arch. Elektron. Übertragungstechnik AEÜ 45(3), 148–159 (1991)Google Scholar
  4. 4.
    Kokkinakis, K., Nandi, A.K.: Exponent parameter estimation for generalized gaussian probability density functions with application to speech modeling. Sig. Process. 85(9), 1852–1858 (2005)CrossRefzbMATHGoogle Scholar
  5. 5.
    Krupiński, R.: Approximated fast estimator for the shape parameter of generalized Gaussian distribution for a small sample size. Bull. Pol. Acad. Sci. Tech. Sci. 63(2), 405–411 (2015)Google Scholar
  6. 6.
    Krupiński, R.: Reconstructed quantized coefficients modeled with generalized Gaussian distribution with exponent 1/3. Image Process. Commun. 21(4), 5–12 (2016)Google Scholar
  7. 7.
    Krupiński, R., Purczyński, J.: First absolute moment and variance estimators used in JPEG reconstruction. IEEE Sig. Process. Lett. 11(8), 674–677 (2004)CrossRefGoogle Scholar
  8. 8.
    Krupiński, R., Purczyński, J.: Approximated fast estimator for the shape parameter of generalized Gaussian distribution. Sig. Process. 86(2), 205–211 (2006)CrossRefzbMATHGoogle Scholar
  9. 9.
    Krupiński, R., Purczyński, J.: Modeling the distribution of DCT coefficients for JPEG reconstruction. Sig. Process. Image Commun. 22(5), 439–447 (2007)CrossRefGoogle Scholar
  10. 10.
    Lavu, S., Choi, H., Baraniuk, R.: Estimation-quantization geometry coding using normal meshes. In: DCC 2003, pp. 362–371. IEEE (2003)Google Scholar
  11. 11.
    Ma, L., Wang, X., Liu, Q., Ngan, K.N.: Reorganized DCT-based image representation for reduced reference stereoscopic image quality assessment. Neurocomputing 215, 21–31 (2016)CrossRefGoogle Scholar
  12. 12.
    Olver, F.W.J.: Asymptotics and Special Functions. Academic Press, New York (1974)zbMATHGoogle Scholar
  13. 13.
    Paez, M.D., Glisson, T.H.: Minimum mean-square-error quantization in speech PCM and DPCM systems. IEEE Trans. Commun. COM–20, 225–230 (1972)CrossRefGoogle Scholar
  14. 14.
    Price, J.R., Rabbani, M.: Biased reconstruction for JPEG decoding. IEEE Sig. Process. Lett. 6(12), 297–299 (1999)CrossRefGoogle Scholar
  15. 15.
    Song, C., Li, F., Dang, Y., Gao, H., Yan, Z., Zuo, W.: Structured detail enhancement for cross-modality face synthesis. Neurocomputing 212, 107–120 (2016)CrossRefGoogle Scholar
  16. 16.
    Yu, S., Zhang, A., Li, H.: A review of estimating the shape parameter of generalized Gaussian distribution ournal of Computational. J. Comput. Inf. Syst. 21(8), 9055–9064 (2012)Google Scholar
  17. 17.
    Wang, C.: Research of image segmentation algorithm based on wavelet transform. In: ICCC 2015, pp. 156–160. IEEE, Chengdu (2015)Google Scholar
  18. 18.
    Wang, R., Li, R., Sun, H.: Haze removal based on multiple scattering model with superpixel algorithm. Sig. Process. 127, 24–36 (2016)CrossRefGoogle Scholar
  19. 19.
    Zhang, Y., Wu, J., Xie, X., Li, L., Shi, G.: Blind image quality assessment with improved natural scene statistics model. Digit. Sig. Process. 57, 56–65 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Chair of Signal Processing and Multimedia EngineeringWest-Pomeranian University of Technology in SzczecinSzczecinPoland

Personalised recommendations