Advertisement

Echocardiographic Evaluation of the Right Heart

  • L. Rudski
  • J. Deschamps
Chapter

Abstract

There is one consensus Guideline for the Echocardiographic Assessment of the Right heart in adults in 2010, with a recent update ASE/EACVI in 2015.The RV is particularly prone to inaccurate measurements due to its triangular/crescentic shape, and requires modification of some views, including the RV focused four chamber apical view. Complete assessment requires a combination of qualitative and quantitative measurements of the RH chamber size, two RV regional and one global systolic function measurements, and estimation of systolic pulmonary artery pressure. Additional measurements are optional and disease or situation specific.

RH measurements are not corrected for body surface area, age or ethnicity, although there are increasing data aiming to provide these stratifications.

Most causes of RV dysfunction are secondary to either pressure overload, volume overload, or acute myocardial contractility dysfunction. A minority of cases are congenital or secondary intrinsic wall dysfunction. Conditions associated with pressure overload pattern include acute and chronic PE, Pulmonary Arterial Hypertension, Left Heart Disease and Lung disease. Conditions associated with volume overload include Tricuspid Regurgitation, Left Heart Disease, Intrinsic myocardial disorders.

Keywords

2DE: Two dimensional echo 3DE: Three dimensional echo CHFpEF: CHF with preserved EF CHFrEF: CHF with reduced EF Mean pulmonary artery pressure Right heart disease 

Abbreviations

2DE

Two dimensional echo

3DE

Three dimensional echo

4C

Four chamber

AMI

Acute myocardial infarction

BSA

Body surface area

CHFpEF

CHF with preserved EF

CHFrEF

CHF with reduced EF

CTED

Chronic thromboembolic disease

CTEPH

Chronic thromboembolic PH

DTI

Doppler tissue imagine

EF

Ejection fraction

ET

Excursion time

FAC

Fractional area change

HF

Heart failure

IVC

Inferior vena cava

LHD

Left heart disease

LV

Left ventricle

MPAP

Mean pulmonary artery pressure

PADP

Pulmonary artery diastolic pressure

PE

Pulmonary embolus

PH

Pulmonary hypertension

PLAX

Parasternal long axis

POCUS

Point of care ultrasound

PSAX

Parasternal short axis

PW

Power wave

RA

Right atrium

RH

Right heart

RV

Right ventricle

RVOT

Right ventricular outflow tract

RVSP

Right ventricular systolic pressure

SPAP

Systolic pulmonary artery pressure

STE

Speckle tracking echocardiography

TA

Tricuspid annulus

TCO

Tricuspid closure-opening time

TR

Tricuspid regurgitation

TV

Tricuspid valve

References

  1. 1.
    Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography. J Am Soc Echocardiogr. 2010;23(7):685–713.CrossRefGoogle Scholar
  2. 2.
    Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16(3):233–70.CrossRefGoogle Scholar
  3. 3.
    Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008;117(11):1436–48.CrossRefGoogle Scholar
  4. 4.
    Rudski LG, Afilalo J. The blind men of Indostan and the elephant in the echo lab. J Am Soc Echocardiogr. 2012;25(7):714–7.CrossRefGoogle Scholar
  5. 5.
    Ho SY. Anatomy echocardiography, and normal right ventricular dimensions. Heart. 2006;92(suppl_1):i2–i13.CrossRefGoogle Scholar
  6. 6.
    Portnoy SG, Rudski LG. Echocardiographic evaluation of the right ventricle: a 2014 perspective. Curr Cardiol Rep. 2015;17(4):21.CrossRefGoogle Scholar
  7. 7.
    Dell'Italia LJ. The right ventricle: anatomy, physiology, and clinical importance. Curr Probl Cardiol. 1991;16(10):653–720.CrossRefGoogle Scholar
  8. 8.
    Maffessanti F, Muraru D, Esposito R, Gripari P, Ermacora D, Santoro C, et al. Age-, body size-, and sex-specific reference values for right ventricular volumes and ejection fraction by three-dimensional echocardiography: a multicenter echocardiographic study in 507 healthy volunteers. Circ Cardiovasc Imaging. 2013;6(5):700–10.CrossRefGoogle Scholar
  9. 9.
    Ling LF, Obuchowski NA, Rodriguez L, Popovic Z, Kwon D, Marwick TH. Accuracy and interobserver concordance of echocardiographic assessment of right ventricular size and systolic function: a quality control exercise. J Am Soc Echocardiogr. 2012;25(7):709–13.CrossRefGoogle Scholar
  10. 10.
    Davlouros PA, Niwa K, Webb G, Gatzoulis MA. The right ventricle in congenital heart disease. Heart. 2006;92(Suppl_1):i27–38.CrossRefGoogle Scholar
  11. 11.
    Haddad F, Doyle R, Murphy DJ, Hunt SA. Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation. 2008;117(13):1717–31.CrossRefGoogle Scholar
  12. 12.
    Chin KM, Kim NHS, Rubin LJ. The right ventricle in pulmonary hypertension. Coron Artery Dis. 2005;16(1):13–8.CrossRefGoogle Scholar
  13. 13.
    Jardin F, Dubourg O, Bourdarias JP. Echocardiographic pattern of acute cor pulmonale. Chest. 1997;111(1):209–17.CrossRefGoogle Scholar
  14. 14.
    Kurnicka K, Lichodziejewska B, Goliszek S, Dzikowska-Diduch O, Zdończyk O, Kozłowska M, et al. Echocardiographic pattern of acute pulmonary embolism: analysis of 511 consecutive patients. J Am Soc Echocardiogr. 2016;29(9):907–13.CrossRefGoogle Scholar
  15. 15.
    Cho JH, Kutti Sridharan G, Kim SH, Kaw R, Abburi T, Irfan A, et al. Right ventricular dysfunction as an echocardiographic prognostic factor in hemodynamically stable patients with acute pulmonary embolism: a meta-analysis. BMC Cardiovasc Disord. 2014;14(1):64.CrossRefGoogle Scholar
  16. 16.
  17. 17.
    de Oliveira TL, Vieira CM, Costa JB, Prata TA, de Moura Costa AS, MDCP N, et al. Mobile right heart thrombus and pulmonary thromboembolism. J Bras Pneumol. 2012;38(2):275–8.CrossRefGoogle Scholar
  18. 18.
    Kasai H, Matsumura A, Sugiura T, Shigeta A, Tanabe N, Ema R, et al. Noninvasive assessment of pulmonary vascular resistance by echocardiography in chronic thromboembolic pulmonary hypertension. Respir Investig. 2015;53(5):210–6.CrossRefGoogle Scholar
  19. 19.
    Boilson BA, Pislaru SV, McGregor CGA. Accuracy of echocardiographic assessment of pulmonary hypertension severity and right ventricular dysfunction in patients with chronic thromboembolic pulmonary hypertension. Minerva Cardioangiol. 2012;60(3):257–65.PubMedGoogle Scholar
  20. 20.
    Repessé X, Charron C, Vieillard-Baron A. Acute cor pulmonale in ARDS: rationale for protecting the right ventricle. Chest. 2015;147(1):259–65.CrossRefGoogle Scholar
  21. 21.
    Jardin F, Vieillard-Baron A. Is there a safe plateau pressure in ARDS? The right heart only knows. Intensive Care Med. 2007;33(3):444–7.CrossRefGoogle Scholar
  22. 22.
    Ozben B, Eryuksel E, Tanrikulu AM, Papila N, Ozyigit T, Celikel T, et al. Acute exacerbation impairs right ventricular function in COPD patients. Hell J Cardiol. 2015;56(4):324–31.Google Scholar
  23. 23.
    Hamzaoui O, Monnet X, Teboul J-L. Pulsus paradoxus. Eur Respir J. 2013;42(6):1696–705.CrossRefGoogle Scholar
  24. 24.
    Hilde JM, Skjørten I, Grøtta OJ, Hansteen V, Melsom MN, Hisdal J, et al. Right ventricular dysfunction and remodeling in chronic obstructive pulmonary disease without pulmonary hypertension. J Am Coll Cardiol. 2013;62(12):1103–11.CrossRefGoogle Scholar
  25. 25.
    Gökdeniz T, Kalaycıoğlu E, Boyacı F, Aykan AÇ, Gürsoy MO, Hatem E, et al. The BODE index, a multidimensional grading system, reflects impairment of right ventricle functions in patients with chronic obstructive pulmonary disease: a speckle-tracking study. Respiration. 2014;88(3):223–33.CrossRefGoogle Scholar
  26. 26.
    Cuttica MJ, Shah SJ, Rosenberg SR, Orr R, Beussink L, Dematte JE, et al. Right heart structural changes are independently associated with exercise capacity in non-severe COPD. PLoS One. 2011;6(12):e29069.CrossRefGoogle Scholar
  27. 27.
    Tannus-Silva DGS, Masson-Silva JB, Ribeiro LS, Conde MB, Rabahi MF. Myocardial performance index correlates with the BODE index and affects quality of life in COPD patients. Int J Chron Obstruct Pulmon Dis. 2016;11(1):2261–8.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Caminiti G, Cardaci V, Conti V, DʼAntoni V, Murugesan J, Battaglia D, et al. Right ventricular systolic dysfunction is related to exercise intolerance in patients with chronic obstructive pulmonary disease. J Cardiopulm Rehabil Prev. 2015;35(1):70–4.CrossRefGoogle Scholar
  29. 29.
    Terzano C, Romani S, Gaudio C, Pelliccia F, Serao M, Vitarelli A. Right heart functional changes in the acute, hypercapnic exacerbations of COPD. Biomed Res Int. 2014;2014(7):596051–6.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Acar G, Kahraman H, Akkoyun M, Kilinc M, Zencir C, Yusufoglu E, et al. Evaluation of atrial electromechanical delay and its relationship to inflammation and oxidative stress in patients with chronic obstructive pulmonary disease. Echocardiography. 2014;31(5):579–85.CrossRefGoogle Scholar
  31. 31.
    Guazzi M, Galiè N. Pulmonary hypertension in left heart disease. Eur Respir Rev. 2012;21(126):338–46.CrossRefGoogle Scholar
  32. 32.
    Lam CSP, Roger VL, Rodeheffer RJ, Borlaug BA, Enders FT, Redfield MM. Pulmonary hypertension in heart failure with preserved ejection fraction a community-based study. J Am Coll Cardiol. 2009;53(13):1119–26.CrossRefGoogle Scholar
  33. 33.
    Hung J. The pathogenesis of functional tricuspid regurgitation. Semin Thorac Cardiovasc Surg. 2010;22(1):76–8.CrossRefGoogle Scholar
  34. 34.
    Shah S, Jenkins T, Markowitz A, Gilkeson R, Rajiah P. Multimodal imaging of the tricuspid valve: normal appearance and pathological entities. Insights Imaging. 2016;7(5):649–67.CrossRefGoogle Scholar
  35. 35.
    Badano LP, Muraru D, Enriquez-Sarano M. Assessment of functional tricuspid regurgitation. Eur Heart J. 2013;34(25):1875–85.CrossRefGoogle Scholar
  36. 36.
    Spinner EM, Lerakis S, Higginson J, Pernetz M, Howell S, Veledar E, et al. Correlates of tricuspid regurgitation as determined by 3D echocardiography: pulmonary arterial pressure, ventricle geometry, annular dilatation, and papillary muscle displacement. Circ Cardiovasc Imaging. 2012;5(1):43–50.CrossRefGoogle Scholar
  37. 37.
    Cheng Y, Gao H, Tang L, Li J, Yao L. Clinical utility of three-dimensional echocardiography in the evaluation of tricuspid regurgitation induced by implantable device leads. Echocardiography. 2016;33((11)):1689–96.CrossRefGoogle Scholar
  38. 38.
    Polewczyk A, Kutarski A, Tomaszewski A, Brzozowski W, Czajkowski M, Polewczyk M, et al. Lead dependent tricuspid dysfunction: analysis of the mechanism and management in patients referred for transvenous lead extraction. Cardiol J. 2013;20(4):402–10.CrossRefGoogle Scholar
  39. 39.
    van Rosendael PJ, Delgado V, Bax JJ. The tricuspid valve and the right heart: anatomical, pathological and imaging specifications. EuroIntervention. 2015;11(Suppl W(W)):W123–7.CrossRefGoogle Scholar
  40. 40.
    Zoghbi W. American Society of Echocardiography: Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography A report from the American Society of Echocardiography’s Nomenclature and Standards Committee and The Task Force on Valvular Regurgitation, developed in conjunction with the American College of Cardiology Echocardiography Committee, The Cardiac Imaging Committee, Council on Clinical Cardiology, The American Heart Association, and the European Society of Cardiology Working Group on Echocardiography, represented by. Eur J Echocardiogr. 2003;4(4):237–61.CrossRefGoogle Scholar
  41. 41.
    Badano LP, Agricola E, Perez de Isla L, Gianfagna P, Zamorano JL. Evaluation of the tricuspid valve morphology and function by transthoracic real-time three-dimensional echocardiography. Eur J Echocardiogr. 2009;10(4):477–84.CrossRefGoogle Scholar
  42. 42.
    Anwar AM, Geleijnse ML, Cate Ten FJ, Meijboom FJ. Assessment of tricuspid valve annulus size, shape and function using real-time three-dimensional echocardiography. Interact Cardiovasc Thorac Surg. 2006;5(6):683–7.CrossRefGoogle Scholar
  43. 43.
    Anwar AM, Soliman OII, Nemes A, van Geuns R-JM, Geleijnse ML, Cate Ten FJ. Value of assessment of tricuspid annulus: real-time three-dimensional echocardiography and magnetic resonance imaging. Int J Cardiovasc Imaging. 2007;23(6):701–5.CrossRefGoogle Scholar
  44. 44.
    Yoerger DM, Marcus F, Sherrill D, Calkins H, Towbin JA, Zareba W, et al. Echocardiographic findings in patients meeting task force criteria for arrhythmogenic right ventricular dysplasia new insights from the multidisciplinary study of right ventricular dysplasia. J Am Coll Cardiol. 2005;45(6):860–5.CrossRefGoogle Scholar
  45. 45.
    Marcus FI, McKenna WJ, Sherrill D, Basso C, Bauce B, Bluemke DA, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Circulation. 2010;121(13):1533–41.CrossRefGoogle Scholar
  46. 46.
    Calkins H. Arrhythmogenic right ventricular dysplasia/cardiomyopathy-three decades of progress. Circ J. 2015;79(5):901–13.CrossRefGoogle Scholar
  47. 47.
    Rallidis LS, Makavos G, Nihoyannopoulos P. Right ventricular involvement in coronary artery disease: role of echocardiography for diagnosis and prognosis. J Am Soc Echocardiogr. 2014;27(3):223–9.CrossRefGoogle Scholar
  48. 48.
    Rajesh GN, Raju D, Nandan D, Haridasan V, Vinayakumar D, Muneer K, et al. Echocardiographic assessment of right ventricular function in inferior wall myocardial infarction and angiographic correlation to proximal right coronary artery stenosis. Indian Heart J. 2013;65(5):522–8.CrossRefGoogle Scholar
  49. 49.
    Finocchiaro G, Kobayashi Y, Magavern E, Zhou JQ, Ashley E, Sinagra G, et al. Prevalence and prognostic role of right ventricular involvement in stress-induced cardiomyopathy. J Card Fail. 2015;21(5):419–25.CrossRefGoogle Scholar
  50. 50.
    Becher T, El-Battrawy I, Baumann S, Fastner C, Behnes M, Loßnitzer D, et al. Characteristics and long-term outcome of right ventricular involvement in Takotsubo cardiomyopathy. Int J Cardiol. 2016;220:371–5.CrossRefGoogle Scholar
  51. 51.
    Scally C, Ahearn T, Rudd A, Neil CJ, Srivanasan J, Jagpal B, et al. Right ventricular involvement and recovery after acute stress-induced (Tako-tsubo) cardiomyopathy. Am J Cardiol. 2016;117(5):775–80.CrossRefGoogle Scholar
  52. 52.
    Heggemann F, Hamm K, Brade J, Streitner F, Doesch C, Papavassiliu T, et al. Right ventricular function quantification in Takotsubo cardiomyopathy using two-dimensional strain echocardiography. PLoS One. 2014;9(8):e103717.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • L. Rudski
    • 1
  • J. Deschamps
    • 1
  1. 1.Azrieli Heart Center Division of Cardiology, Department of MedicineJewish General Hospital, McGill UniversityMontrealCanada

Personalised recommendations