Advertisement

Echocardiographic Evaluation of the Diastolic Function and Dysfunction

  • Anita Sadeghpour
  • Azin Alizadehasl
  • Samaneh Pourhosseinali
Chapter

Abstract

Assessment and study of the diastolic function should be an integral part of the cardiac function evaluation. At present, echocardiography is the best noninvasive way to study and evaluate the diastolic function and to estimate filling pressures. M-mode, 2D, and Doppler (blood flow, tissue, and color) echocardiographic examinations are all useful in evaluating the diastolic function. The left ventricular diastolic filling encompasses a series of events that are affected by numerous factors such as myocardial relaxation, myocardial compliance, cardiac rhythm, and pericardial compliance.

Classification of the diastolic filling pattern (or diastolic dysfunction) is based on several parameters, which will be explained in this chapter.

Keywords

Diastolic dysfunction Mitral inflow pattern Tissue Doppler imaging Pulmonary venous flow Grading of diastolic function 

Abbreviations

A

Peak A-wave velocity of the mitral valve (cm/s)

A′

TDI of the mitral annulus

AF

Atrial fibrillation

AR

Pulmonary valve atrial reversal

AV

Aortic valve

CW

Continuous wave

DT

Deceleration time

E

Peak E-wave velocity of the mitral valve (cm/s)

E′

TDI of the mitral annulus

EF

Ejection fraction

GLS

Global longitudinal strain

HR

Heart rate

IVCT

Isovolumic contraction time

IVRT

Isovolumic relaxation time

LA

Left atrium

LAP

Left atrial pressure

LV

Left ventricle

LVEDP

Left ventricular end-diastolic pressure

MHz

Megahertz

MV

Mitral valve

PCWP

Pulmonary capillary wedge pressure

PV AR

Pulmonary valve atrial reversal

PVs

Pulmonary veins

PVs1

First systolic component of the pulmonary vein

PVs2

Second systolic component of the pulmonary vein

PVd(D)

Diastolic component of the pulmonary vein

PW

Pulsed wave

RV

Right ventricle

SR

Strain rate

TDI

Tissue Doppler imaging

TEE

Transesophageal echocardiography

TTE

Transthoracic echocardiography

TV

Tricuspid valve

VP

Velocity of propagation

VTI

Velocity of time integral

References

  1. 1.
    Nagueh SF, Smiseth OA, Appleton CP, Byrd BF, Dokainish H, Edvardsen T, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. ASE/EACVI GUIDELINES AND STANDARDS. J Am Soc Echocardiogr. 2016;29:277–314.CrossRefGoogle Scholar
  2. 2.
    Traversi E, Pozzoli M, Cioffi G, Capomolla S, Forni G, Sanarico M, et al. Mitral flow velocity changes after 6 months of optimized therapy provide important hemodynamic and prognostic information in patients with chronic heart failure. Am Heart J. 1996;132:809–19.CrossRefGoogle Scholar
  3. 3.
    Aljaroudi W, AlraiesMC, Halley C, Rodriguez L, Grimm RA, Thomas JD, et al. Impact of progression of diastolic dysfunction on mortality in patients with normal ejection fraction. Circulation. 2012;125:782–8.CrossRefGoogle Scholar
  4. 4.
    Thomas JD, Flachskampf FA, Chen C, et al. Isovolumic relaxation time varies predictably with its time constant and aortic and LA pressure: implications for the noninvasive evaluation of ventricular relaxation. Am Heart J. 1992;124:1305–13.CrossRefGoogle Scholar
  5. 5.
    Klein AL, Asher CR. Disease of the pericardium, restrictive cardiomyopathy, and diastolic dysfunction. In: Topol EJ, Califf RM, Prystowsky EN, editors. Textbook of cardiovascular medicine. Philadelphia: Lippincott Williams & Wilkins; 2007. p. 420–59.Google Scholar
  6. 6.
    Little WC, Downes TR. Clinical evaluation of left ventricular diastolic performance. Prog Cardiovasc Dis. 1990;32:273–90.CrossRefGoogle Scholar
  7. 7.
    Thomas JD, Weyman AE. Echo-Doppler evaluation of ventricular diastolic function: physics and physiology. Circulation. 1991;77:977–90.CrossRefGoogle Scholar
  8. 8.
    Nishimura RA, Tajik AJ. The Valsalva maneuver—3 centuries later. Mayo Clin Proc. 2004;79:577–8.CrossRefGoogle Scholar
  9. 9.
    Hurrell D, Nishimura RA, Ilstrup DM, Appleton CP. Utility of preload alteration in assessment of left ventricular filling pressure by Doppler echocardiography: a simultaneous catheterization and Doppler echocardiographic study. J Am Coll Cardiol. 1997;30:459–67.CrossRefGoogle Scholar
  10. 10.
    Ha JW, Oh JK, Redfield MM, Ujino K, Seward JB, Tajik AJ. Triphasic mitral inflow velocity with middiastolic filling: clinical implications and associated echocardiographic findings. J Am Soc Echocardiogr. 2004;17:428–31.CrossRefGoogle Scholar
  11. 11.
    Jensen JL, Williams FE, Beilby BJ, Johnson BL, Miller LK, Ginter TL, et al. Feasibility of obtaining pulmonary venous flow velocity in cardiac patients using transthoracic pulsed wave Doppler technique. J Am Soc Echocardiogr. 1997;10:60–6.CrossRefGoogle Scholar
  12. 12.
    Klein AL, Tajik AJ. Doppler assessment of pulmonary venous flow in healthy subjects and in patients with heart disease. J Am Soc Echocardiogr. 1991;4:379–92.CrossRefGoogle Scholar
  13. 13.
    Dini FL, Michelassi C, Micheli G, et al. Prognostic value of pulmonary venous flow Doppler signal in left ventricular dysfunction: contribution of the difference in duration of pulmonary venous and mitral flow at atrial contraction. J Am Coll Cardiol. 2000;36:1295–302.CrossRefGoogle Scholar
  14. 14.
    Courtois M, Kovacs SJ Jr, Ludbrook PA. Transmitral pressure-flow velocity relation. Importance of regional pressure gradients in the left ventricle during diastole. Circulation. 1988;78:661–71.CrossRefGoogle Scholar
  15. 15.
    Brun P, Tribouilloy C, Duval AM, et al. Left ventricular flow propagation during early filling is related to wall relaxation: a color M-mode Doppler analysis. J Am Coll Cardiol. 1992;20:420–32.CrossRefGoogle Scholar
  16. 16.
    Garcia MJ, Ares MA, Asher C, Rodriguez L, Vandervoort P, Thomas JD. An index of early left ventricular filling that combined with pulsed Doppler peak E velocity may estimate capillary wedge pressure. J Am Coll Cardiol. 1997;29:448–54.CrossRefGoogle Scholar
  17. 17.
    Takatsuji H, Mikami T, Urasawa K, Teranishi J, Onozuka H, Takagi C, et al. A new approach for evaluation of left ventricular diastolic function:spatial and temporal analysis of left ventricular filling flow propagation by color M-mode Doppler echocardiography. J Am Coll Cardiol. 1996;27:365–71.CrossRefGoogle Scholar
  18. 18.
    Stugaard M, Smiseth OA, Risoe C, Ihlen H. Intraventricular early diastolic filling during acute myocardial ischemia. Assessment by multigated color M-mode Doppler echocardiography. Circulation. 1993;88:2705–13.CrossRefGoogle Scholar
  19. 19.
    Steine K, Stugaard M, Smiseth OA. Mechanisms of retarded apical filling in acute ischemic left ventricular failure. Circulation. 1999;99:2048–54.CrossRefGoogle Scholar
  20. 20.
    Rivas-Gotz C, Manolios M, Thohan V, Nagueh SF. Impact of left ventricular ejection fraction on estimation of left ventricular filling pressures using tissue Doppler and flow propagation velocity. Am J Cardiol. 2003;91:780–4.CrossRefGoogle Scholar
  21. 21.
    Waggoner AD, Bierig SM. Tissue Doppler imaging: a useful echocardiographic method for the cardiac sonographer to assess systolic and diastolic left ventricular function. J Am Soc Echocardiogr. 2001;14:1143–52.CrossRefGoogle Scholar
  22. 22.
    Nagueh SF, Appleton CP, Gillebert TC, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr. 2009;22:107–33.CrossRefGoogle Scholar
  23. 23.
    Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quinones MA. Doppler tissue imaging: a non-invasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol. 1997;30:1527–33.CrossRefGoogle Scholar
  24. 24.
    Mogelvang R, Sogaard P, Pedersen SA, et al. Tissue Doppler echocardiography in persons with hypertension, diabetes, or ischaemic heart disease: the Copenhagen City Heart Study. Eur Heart J. 2009;30:731–9.CrossRefGoogle Scholar
  25. 25.
    De Sutter J, De Backer J, Van de Veire N, Velghe A, De Buyzere M, Gillebert TC. Effects of age, gender, and left ventricular mass on septal mitral annulus velocity (E’) and the ratio of transmitral early peak velocity to E’ (E/E’). Am J Cardiol. 2005;95:1020–3.CrossRefGoogle Scholar
  26. 26.
    Ommen SR, Nishimura RA, Appleton CP, Miller FA, JK O, Redfield MM, et al. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation. 2000;102:1788–94.CrossRefGoogle Scholar
  27. 27.
    Kasner M, Westermann D, Steendijk P, Gaub R, Wilkenshoff U, Weitmann K, et al. Utility of Doppler echocardiography and tissue Doppler imaging in the estimation of diastolic function in heart failure with normal ejection fraction: a comparative Doppler-conductance catheterization study. Circulation. 2007;11:637–47.CrossRefGoogle Scholar
  28. 28.
    Diwan A, McCulloch M, Lawrie GM, Reardon MJ, Nagueh SF. Doppler estimation of left ventricular filling pressures in patients with mitral valve disease. Circulation. 2005;111:3281–9.CrossRefGoogle Scholar
  29. 29.
    Rivas-Gotz C, Khoury DS, Manolios M, Rao L, Kopelen HA, Nagueh SF. Time interval between onset of mitral inflow and onset of early diastolic velocity by tissue Doppler: a novel index of left ventricular relaxation experimental studies and clinical application. J Am Coll Cardiol. 2003;42:1463–70.CrossRefGoogle Scholar
  30. 30.
    Min PK, Ha JW, Jung JH, Choi EY, Choi D, Rim SJ, et al. Incremental value of measuring the time difference between onset of mitral inflow and onset of early diastolic mitral annulus velocity for the evaluation of left ventricular diastolic pressures in patients with normal systolic function and an indeterminate E/E’. Am J Cardiol. 2007;100:326–30.CrossRefGoogle Scholar
  31. 31.
    Sohn DW, Kim YJ, Park YB, et al. Clinical validity of measuring time difference between onset of mitral inflow and onset of early diastolic mitral annulus velocity in the evaluation of left ventricular diastolic function. J Am Coll Cardiol. 2004;43:2097–101.CrossRefGoogle Scholar
  32. 32.
    Voigt JU, Exner B, Schmiedehausen K, Huchzermeyer C, Reulbach U, Nixdorff U, et al. Strain-rate imaging during dobutamine stress echocardiography provides objective evidence of inducible ischemia. Circulation. 2003;107:2120–6.CrossRefGoogle Scholar
  33. 33.
    Ha JW, Lulic F, Bailey KR, Pellikka PA, Seward JB, Tajik AJ, et al. Effects of treadmill exercise on mitral inflow and annular velocities in healthy adults. Am J Cardiol. 2003;91:114–5.CrossRefGoogle Scholar
  34. 34.
    Ha JW, JK O, Pellikka PA, Ommen SR, Stussy VL, Bailey KR, et al. Diastolic stress echocardiography: a novel noninvasive diagnostic test for diastolic dysfunction using supine bicycle exercise Doppler echocardiography. J Am Soc Echocardiogr. 2005;18:63–8.CrossRefGoogle Scholar
  35. 35.
    Sohn DW, Song JM, Zo JH, Chai IH, Kim HS, Chun HG, et al. Mitral annulus velocity in the evaluation of left ventricular diastolic function in atrial fibrillation. J Am Soc Echocardiogr. 1999;12:927–31.CrossRefGoogle Scholar
  36. 36.
    Nagueh SF, Kopelen HA, MA Q~n. Assessment of left ventricular filling pressures by Doppler in the presence of atrial fibrillation. Circulation. 1996;94:2138–45.CrossRefGoogle Scholar
  37. 37.
    Chirillo F, Brunazzi MC, Barbiero M, Giavarina D, Pasqualini M, Franceschini-Grisolia E, et al. Estimating mean pulmonary wedge pressure in patients with chronic atrial fibrillation from transthoracic Doppler indexes of mitral and pulmonary venous flow velocity. J Am Coll Cardiol. 1997;30:19–26.CrossRefGoogle Scholar
  38. 38.
    Li C, Zhang J, Zhou C, Huang L, Tang H, Rao L. Will simultaneous measurement of E/eˈ index facilitate the non-invasive assessment of left ventricular filling pressure in patients with non-valvular atrial fibrillation? Eur J Echocardiogr. 2010;11:296–301.CrossRefGoogle Scholar
  39. 39.
    Nagueh SF, Mikati I, Kopelen HA, Middleton KJ, Quinones MA, Zoghbi WA. Doppler estimation of left ventricular filling pressure in sinus tachycardia. A new application of tissue Doppler imaging. Circulation. 1998;98:1644–50.CrossRefGoogle Scholar
  40. 40.
    Sohn DW, Kim YJ, Kim HC, Chun HG, Park YB, Choi YS. Evaluation of left ventricular diastolic function when mitral E and A waves are completely fused: role of assessing mitral annulus velocity. J Am Soc Echocardiogr. 1999;12:203–8.CrossRefGoogle Scholar
  41. 41.
    Nagueh SF, Bhatt R, Vivo RP, Krim SR, Sarvari SI, Russell K, et al. Echocardiographic evaluation of hemodynamics in patients with decompensated systolic heart failure. Circ Cardiovasc Imag. 2011;4:220–7.CrossRefGoogle Scholar
  42. 42.
    D’Souza KA, Mooney DJ, Russell AE, MacIsaac AI, Aylward PE, Prior DL. Abnormal septal motion affects early diastolic velocities at the septal and lateral mitral annulus, and impacts on estimation of the pulmonary capillary wedge pressure. J Am Soc Echocardiogr. 2005;18:445–53.CrossRefGoogle Scholar
  43. 43.
    Nagueh SF, Lakkis NM, Middleton KJ, Spencer WH III, Zoghbi WA, Quinones MA. Doppler estimation of left ventricular filling pressures in patients with hypertrophic cardiomyopathy. Circulation. 1999;99:254–61.CrossRefGoogle Scholar
  44. 44.
    Kitaoka H, Kubo T, Okawa M, Takenaka N, Sakamoto C, Baba Y, et al. Tissue Doppler imaging and plasma BNP levels to assess the prognosis in patients with hypertrophic cardiomyopathy. J Am Soc Echocardiogr. 2011;24:1020–5.CrossRefGoogle Scholar
  45. 45.
    McMahon CJ, Nagueh SF, Pignatelli RH, Denfield SW, Dreyer WJ, Price JF, et al. Characterization of left ventricular diastolic function by tissue Doppler imaging and clinical status in children with hypertrophic cardiomyopathy. Circulation. 2004;109:1756–62.CrossRefGoogle Scholar
  46. 46.
    Biagini E, Spirito P, Rocchi G, Ferlito M, Rosmini S, Lai F, et al. Prognostic implications of the Doppler restrictive filling pattern in hypertrophic cardiomyopathy. Am J Cardiol. 2009;104:1727–31.CrossRefGoogle Scholar
  47. 47.
    Nagueh SF, Bierig SM, Budoff MJ, Desai M, Dilsizian V, Eidem B, et al. American Society of Echocardiography, American Society of Nuclear Cardiology, Society for Cardiovascular Magnetic Resonance, Society of Cardiovascular Computed Tomography. American Society of Echocardiography clinical recommendations for multimodality cardiovascular imaging of patients with hypertrophic cardiomyopathy: endorsed by the American Society of Nuclear Cardiology, Society for Cardiovascular Magnetic Resonance, and Society of Cardiovascular Computed Tomography. J Am Soc Echocardiogr. 2011;24:473–98.CrossRefGoogle Scholar
  48. 48.
    Cardim N, Galderisi M, Edvardsen T, Plein S, Popescu BA, D’Andrea A, et al. Role of multimodality cardiac imaging in the management of patients with hypertrophic cardiomyopathy: an expert consensus of the European Association of Cardiovascular Imaging endorsed by the Saudi Heart Association. Eur Heart J Cardiovasc Imag. 2015;16:380.CrossRefGoogle Scholar
  49. 49.
    Chang SA, Kim HK, Kim DH, Kim JC, Kim YJ, Kim HC, et al. Left ventricular twist mechanics in patients with apical hypertrophic cardiomyopathy cardiomyopathy: assessment with 2D speckle tracking echocardiography. Heart. 2010;96:49–55.CrossRefGoogle Scholar
  50. 50.
    Wang J, Buergler JM, Veerasamy K, Ashton YP, Nagueh SF. Delayed untwisting the mechanistic link between dynamic obstruction and exercise tolerance in patients with hypertrophic obstructive cardiomyopathy. J Am Coll Cardiol. 2009;54:1326–34.CrossRefGoogle Scholar
  51. 51.
    Klein AL, Hatle LK, Burstow DJ, Seward JB, Kyle RA, Bailey KR, et al. Doppler characterization of left ventricular diastolic function in cardiac amyloidosis. J Am Coll Cardiol. 1989;13:1017–26.CrossRefGoogle Scholar
  52. 52.
    Koyama J, Ray-Sequin PA, Falk RH. Longitudinal myocardial function assessed by tissue velocity, strain, and strain rate tissue Doppler echocardiography in patients with al (primary) cardiac amyloidosis. Circulation. 2003;107:2446–52.CrossRefGoogle Scholar
  53. 53.
    Sallach JA, Klein AL. Tissue Doppler imaging in the evaluation of patients with cardiac amyloidosis. Curr Opin Cardiol. 2004;19:464–71.CrossRefGoogle Scholar
  54. 54.
    Appleton CP, Hatle LK, Popp RL. Demonstration of restrictive ventricular physiology by Doppler echocardiography. J Am Coll Cardiol. 1988;11:757–68.CrossRefGoogle Scholar
  55. 55.
    Cohen GI, Pietrolungo JF, Thomas JD, Klein AL. A practical guide to assessment of ventricular diastolic function using Doppler echocardiography. J Am Coll Cardiol. 1996;27:1753–60.CrossRefGoogle Scholar
  56. 56.
    Phelan D, Collier P, Thavendiranathan P, Popovic ZB, Hanna M, Plana JC, et al. Relative apical sparing of longitudinal strain using two dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart. 2012;98:1442–8.CrossRefGoogle Scholar
  57. 57.
    Bruch C, Stypmann J, Gradaus R, Breithardt G, Wichter T. Usefulness of tissue Doppler imaging for estimation of filling pressures in patients with primary or secondary pure mitral regurgitation. Am J Cardiol. 2004;93:324–8.CrossRefGoogle Scholar
  58. 58.
    Bruch C, Klem I, Breithardt G, Wichter T, Gradaus R. Diagnostic usefulness and prognostic implications of the mitral E/E0 ratio in patients with heart failure and severe secondary mitral regurgitation. Am J Cardiol. 2007;100(5):860.CrossRefGoogle Scholar
  59. 59.
    Rossi A, Cicoira M, Golia G, Anselmi M, Zardini P. Mitral regurgitation and left ventricular diastolic dysfunction similarly affect mitral and pulmonary vein flow Doppler parameters: the advantage of end-diastolic markers. J Am Soc Echocardiogr. 2001;14:562–8.CrossRefGoogle Scholar
  60. 60.
    Soeki T, Fukuda N, Shinohara H, Sakabe K, Onose Y, Sawada Y, et al. Mitral inflow and mitral annular motion velocities in patients with mitral annular calcification: evaluation by pulsed Doppler echocardiography and pulsed Doppler tissue imaging. Eur J Echocardiogr. 2002;3:128–34.CrossRefGoogle Scholar
  61. 61.
    Dokainish H, Sengupta R, Pillai M, Bobek J, Lakkis N. Usefulness of new diastolic strain and strain rate indexes for the estimation of left ventricular filling pressure. Am J Cardiol. 2008;101:1504–9.CrossRefGoogle Scholar
  62. 62.
    Ersbøll M, Andersen MJ, Valeur N, Mogensen UM, Fahkri Y, Thune JJ, et al. Early diastolic strain rate in relation to systolic and diastolic function and prognosis in acute myocardial infarction: a two-dimensional speckle tracking study. Eur Heart J. 2014;35:648–56.CrossRefGoogle Scholar
  63. 63.
    Wang J, Khoury DS, Thohan V, Torre-Amione G, Nagueh SF. Global diastolic strain rate for the assessment of left ventricular relaxation and filling pressures. Circulation. 2007;115:1376–83.CrossRefGoogle Scholar
  64. 64.
    Notomi Y, Lysyansky P, Setser RM, Shiota T, Popovic ZB, Martin-Miklovic MG, et al. Measurement of ventricular torsion by two dimensional ultrasound speckle tracking imaging. J Am Coll Cardiol. 2005;45:2034–41.CrossRefGoogle Scholar
  65. 65.
    Helle-Valle T, Crosby J, Edvardsen T, Lyseggen E, Amundsen BH, Smith HJ, et al. New noninvasive method for assessment of left ventricular rotation: speckle tracking echocardiography. Circulation. 2005;112:3149–56.CrossRefGoogle Scholar
  66. 66.
    Ersbøll M, Andersen MJ, Valeur N, Mogensen UM, Waziri H, Møller JE, et al. The prognostic value of left atrial peak reservoir strain in acute myocardial infarction is dependent on left ventricular longitudinal function and left atrial size. Circ Cardiovasc Imag. 2013;6:26–33.CrossRefGoogle Scholar
  67. 67.
    Antoni ML, ten Brinke EA, Atary JZ, Marsan NA, Holman ER, Schalij MJ, et al. Left atrial strain is related to adverse events in patients after acute myocardial infarction treated with primary percutaneous coronary intervention. Heart. 2011;97:1332–7.CrossRefGoogle Scholar
  68. 68.
    Kurt M, Wang J, Torre-Amione G, Nagueh SF. Left atrial function in diastolic heart failure. Circ Cardiovasc Imag. 2009;2:10–5.CrossRefGoogle Scholar
  69. 69.
    Wakami K, Ohte N, Asada K, Fukuta H, Goto T, Mukai S, et al. Correlation between left ventricular end-diastolic pressure and peak left atrial wall strain during left ventricular systole. J Am Soc Echocardiogr. 2009;22:847–51.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Anita Sadeghpour
    • 1
  • Azin Alizadehasl
    • 2
  • Samaneh Pourhosseinali
    • 3
  1. 1.Echocardiography Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical ScienceTehranIran
  2. 2.Echocardiologist, Echocardiography and Cardiogenetic Research CentersCardio-Oncology Department, Rajaie Cardiovascular Medical and Research CenterTehranIran
  3. 3.Echocardiography Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran

Personalised recommendations