Advertisement

Dynamics of Pointing with Pointer Acceleration

  • Jörg MüllerEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10515)

Abstract

In this paper we investigate the dynamics (including velocities and accelerations) of mouse pointing when Pointer Acceleration (PA) functions are used. We also propose a simple model for these dynamics from a control theoretic perspective. The model allows us to simulate the effect of PA functions on pointing dynamics. In particular, it reproduces and explains many important phenomena we observe in pointing dynamics with PA functions. These include: (1) Pointer position, velocity, and acceleration over time, (2) Different accelerations when moving in different directions, and the resulting mouse drift when using PA functions, (3) Discontinuous jumps in phase space and associated acceleration peaks in Hooke plots when using Step PA functions. We identify parameters of the model using a reciprocal pointing task with the mouse controlling a pointer on a computer screen using sigmoid and step PA functions and constant gain. Our model explains the human-computer system including the PA function as a closed-loop dynamical system. In particular, we use a second-order model resembling a spring-mass-damper system (second order lag). Our model explains and allows to simulate the role of PA functions in pointing, including the phenomena described above.

References

  1. 1.
    Aranovskiy, S., Ushirobira, R., Efimov, D., Casiez, G.: Modeling pointing tasks in mouse-based human-computer interactions. In: 2016 IEEE 55th Conference on Decision and Control (CDC), pp. 6595–6600. IEEE (2016)Google Scholar
  2. 2.
    Barrett, R.C., Selker, E.J., Rutledge, J.D., Olyha, R.S.: Negative inertia: a dynamic pointing function. In: Conference Companion on Human Factors in Computing Systems, CHI 1995, pp. 316–317. ACM, New York (1995). http://doi.acm.org/10.1145/223355.223692
  3. 3.
    Beamish, D., Bhatti, S.A., MacKenzie, I.S., Wu, J.: Fifty years later: a neurodynamic explanation of fitts’ law. J. R. Soc. Interface 3(10), 649–654 (2006). http://rsif.royalsocietypublishing.org/content/3/10/649 CrossRefGoogle Scholar
  4. 4.
    Bootsma, R.J., Fernandez, L., Mottet, D.: Behind fitts law: kinematic patterns in goal-directed movements. Int. J. Hum. Comput. Stud. 61(6), 811–821 (2004)CrossRefGoogle Scholar
  5. 5.
    Bullock, D., Grossberg, S.: Neural dynamics of planned arm movements: emergent invariants and speed-accuracy properties during trajectory formation. Psychol. Rev. 95(1), 49 (1988)CrossRefGoogle Scholar
  6. 6.
    Casiez, G., Roussel, N.: No more bricolage!: methods and tools to characterize, replicate and compare pointing transfer functions. In: Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, UIST 2011, pp. 603–614. ACM, New York (2011). http://doi.acm.org/10.1145/2047196.2047276
  7. 7.
    Casiez, G., Vogel, D., Balakrishnan, R., Cockburn, A.: The impact of control-display gain on user performance in pointing tasks. Hum. Comput. Inter. 23(3), 215–250 (2008)CrossRefGoogle Scholar
  8. 8.
    Costello, R.G.: The surge model of the well-trained human operator in simple manual control. IEEE Trans. Man–Mach. Syst. 9(1), 2–9 (1968)CrossRefGoogle Scholar
  9. 9.
    Crossman, E.R.F.W., Goodeve, P.J.: Feedback control of hand-movement and fitts’ law. Quart. J. Exp. Psychol. 35(2), 251–278 (1983)CrossRefGoogle Scholar
  10. 10.
    Feuchtner, T., Müller, J.: Extending the body for interaction with reality. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI 2017, pp. 5145–5157. ACM, New York (2017). http://doi.acm.org/10.1145/3025453.3025689
  11. 11.
    Fitts, P.M.: The information capacity of the human motor system in controlling the amplitude of movement. J. Exp. Psychol. 47(6), 381–391 (1954)CrossRefGoogle Scholar
  12. 12.
    Fitts, P.M., Peterson, J.R.: Information capacity of discrete motor responses. J. Exp. Psychol. 67(2), 103 (1964)CrossRefGoogle Scholar
  13. 13.
    Frees, S., Kessler, G.D., Kay, E.: Prism interaction for enhancing control in immersive virtual environments. ACM Trans. Comput. Hum. Inter. (TOCHI) 14(1), 2 (2007)CrossRefGoogle Scholar
  14. 14.
    Gallo, L., Minutolo, A.: Design and comparative evaluation of smoothed pointing: a velocity-oriented remote pointing enhancement technique. Int. J. Hum. Comput. Stud. 70(4), 287–300 (2012)CrossRefGoogle Scholar
  15. 15.
    Jagacinski, R.J., Flach, J.M.: Control Theory for Humans: Quantitative Approaches to Modeling Performance. Lawrence Erlbaum, Mahwah (2003)Google Scholar
  16. 16.
    Jellinek, H.D., Card, S.K.: Powermice and user performance. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 1990, pp. 213–220. ACM, New York (1990). http://doi.acm.org/10.1145/97243.97276
  17. 17.
    König, W.A., Gerken, J., Dierdorf, S., Reiterer, H.: Adaptive pointing–design and evaluation of a precision enhancing technique for absolute pointing devices. In: Gross, T., Gulliksen, J., Kotzé, P., Oestreicher, L., Palanque, P., Prates, R.O., Winckler, M. (eds.) INTERACT 2009. LNCS, vol. 5726, pp. 658–671. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03655-2_73 CrossRefGoogle Scholar
  18. 18.
    Lee, B., Bang, H.: A mouse with two optical sensors that eliminates coordinate disturbance during skilled strokes. Hum.-Comput. Inter. 30(2), 122–155 (2015). http://dx.doi.org/10.1080/07370024.2014.894888 CrossRefGoogle Scholar
  19. 19.
    Ljung, L.: System Identification—Theory for the User. Prentice Hall, Englewood Cliffs (1987)zbMATHGoogle Scholar
  20. 20.
    MacKenzie, I.S.: Fitts’ law as a research and design tool in human-computer interaction. Hum. Comput. Inter. 7(1), 91–139 (1992)CrossRefGoogle Scholar
  21. 21.
    Meyer, D.E., Smith, J.E.K., Kornblum, S., Abrams, R.A., Wright, C.E.: Speed-accuracy trade-offs in aimed movements: toward a theory of rapid voluntary action. In: Jeannerod, M. (ed.) Attention and Performance XIII, pp. 173–226 (1990)Google Scholar
  22. 22.
    Müller, J., Oulasvirta, A., Murray-Smith, R.: Control theoretic models of pointing. ACM Trans. Comput. Hum. Inter. 24(4) (2017)Google Scholar
  23. 23.
    Nancel, M., Pietriga, E., Chapuis, O., Beaudouin-Lafon, M.: Mid-air pointing on ultra-walls. ACM Trans. Comput. Hum. Inter. (TOCHI) 22(5), 21 (2015)Google Scholar
  24. 24.
    Poulton, E.C.: Tracking Skill and Manual Control. Academic Press, New York (1974)Google Scholar
  25. 25.
    Poupyrev, I., Billinghurst, M., Weghorst, S., Ichikawa, T.: The go-go interaction technique: non-linear mapping for direct manipulation in VR. In: Proceedings of the 9th Annual ACM Symposium on User Interface Software and Technology, pp. 79–80. ACM (1996)Google Scholar
  26. 26.
    Rutledge, J.D., Selker, E.J.: Force-to-motion functions for pointing. In: Proceedings of the IFIP TC13 3rd International Conference on Human-Computer Interaction, pp. 701–706. North-Holland Publishing Co. (1990)Google Scholar
  27. 27.
    Schmidt, R.A., Lee, T.: Motor Control and Learning. Human Kinetics, Champaign (1988)Google Scholar
  28. 28.
    Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press, Champaign (2015)zbMATHGoogle Scholar
  29. 29.
    Sheridan, T.B., Ferrell, W.R.: Man-Machine Systems: Information, Control, and Decision Models of Human Performance. MIT Press, Cambridge (1974)Google Scholar
  30. 30.
    Varnell, J.P., Zhang, F.: Characteristics of human pointing motions with acceleration. In: Proceedings of IEEE 54th Annual Conference on Decision and Control (CDC2015), Osaka, Japan, pp. 5364–5369 (2015)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceAarhus UniversityAarhusDenmark

Personalised recommendations