Abstract

Reconstructing vascular networks is a challenging task in medical image processing as automated methods have to deal with large variations in vessel shape and image quality. Recent methods have addressed this problem as constrained maximum a posteriori (MAP) inference in a graphical model, formulated over an overcomplete network graph. Manual control and adjustments are often desired in practice and strongly benefit from indicating the uncertainties in the reconstruction or presenting alternative solutions. In this paper, we examine two different methods to sample vessel network graphs, a perturbation and a Gibbs sampler, and thereby estimate marginals. We quantitatively validate the accuracy of the approximated marginals using true marginals, computed by enumeration.

Supplementary material

456923_1_En_5_MOESM1_ESM.pdf (97 kb)
Supplementary material 1 (pdf 97 KB)

References

  1. 1.
    Lesage, D., Angelini, E., Bloch, I., Funka-Lea, G.: A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes. Med. Image Anal. 13(6), 819–845 (2009)CrossRefGoogle Scholar
  2. 2.
    Türetken, E., Benmansour, F., Andres, B., Glowacki, P., Pfister, H., Fua, P.: Reconstructing curvilinear networks using path classifiers and integer programming. IEEE Trans. Pattern Anal. Mach. Intell. 38(12), 2515–2530 (2016)CrossRefGoogle Scholar
  3. 3.
    Rempfler, M., Schneider, M., Ielacqua, G.D., Xiao, X., Stock, S.R., Klohs, J., Székely, G., Andres, B., Menze, B.H.: Reconstructing cerebrovascular networks under local physiological constraints by integer programming. Med. Image Anal. 25(1), 86–94 (2015)CrossRefGoogle Scholar
  4. 4.
    Rempfler, M., Andres, B., Menze, B.H.: The minimum cost connected subgraph problem in medical image analysis. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 397–405. Springer, Cham (2016). doi:10.1007/978-3-319-46726-9_46 CrossRefGoogle Scholar
  5. 5.
    Payer, C., Pienn, M., Blint, Z., Shekhovtsov, A., Talakic, E., Nagy, E., Olschewski, A., Olschewski, H., Urschler, M.: Automated integer programming based separation of arteries and veins from thoracic CT images. Med. Image Anal. 34, 109–122 (2016)CrossRefGoogle Scholar
  6. 6.
    Robben, D., Türetken, E., Sunaert, S., Thijs, V., Wilms, G., Fua, P., Maes, F., Suetens, P.: Simultaneous segmentation and anatomical labeling of the cerebral vasculature. Med. Image Anal. 32, 201–215 (2016)CrossRefGoogle Scholar
  7. 7.
    Klohs, J., Baltes, C., Princz-Kranz, F., Ratering, D., Nitsch, R.M., Knuesel, I., Rudin, M.: Contrast-enhanced magnetic resonance microangiography reveals remodeling of the cerebral microvasculature in transgenic arca\(\beta \) mice. J. Neurosci. 32(5), 1705–1713 (2012)CrossRefGoogle Scholar
  8. 8.
    Batra, D., Yadollahpour, P., Guzman-Rivera, A., Shakhnarovich, G.: Diverse M-best solutions in markov random fields. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 1–16. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33715-4_1 CrossRefGoogle Scholar
  9. 9.
    Kirillov, A., Savchynskyy, B., Schlesinger, D., Vetrov, D., Rother, C.: Inferring M-best diverse labelings in a single one. In: IEEE International Conference on Computer Vision (ICCV), pp. 1814–1822 (2015)Google Scholar
  10. 10.
    Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 6(6), 721–741 (1984)CrossRefMATHGoogle Scholar
  11. 11.
    Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT press (2009)Google Scholar
  12. 12.
    Papandreou, G., Yuille, A.L.: Perturb-and-MAP random fields: using discrete optimization to learn and sample from energy models. In: International Conference on Computer Vision 2011, pp. 193–200 (2011)Google Scholar
  13. 13.
    Tarlow, D., Adams, R.P., Zemel, R.S.: Randomized optimum models for structured prediction. In: Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics, vol. 22, pp. 1221–1229 (2012)Google Scholar
  14. 14.
    Hazan, T., Jaakkola, T.: On the partition function and random maximum a-posteriori perturbations. In: Proceedings of the 29th International Conference on Machine Learning (ICML-12), pp. 991–998 (2012)Google Scholar
  15. 15.
    Hazan, T., Maji, S., Jaakkola, T.: On sampling from the gibbs distribution with random maximum a-posteriori perturbations. In: Advances in Neural Information Processing Systems, pp. 1268–1276 (2013)Google Scholar
  16. 16.
    Orabona, F., Hazan, T., Sarwate, A., Jaakkola, T.: On measure concentration of random maximum a-posteriori perturbations. In: International Conference on Machine Learning, pp. 432–440 (2014)Google Scholar
  17. 17.
    Gane, A., Hazan, T., Jaakkola, T.: Learning with maximum a-posteriori perturbation models. In: Artificial Intelligence and Statistics, pp. 247–256 (2014)Google Scholar
  18. 18.
    Alberts, E., Rempfler, M., Alber, G., Huber, T., Kirschke, J., Zimmer, C., Menze, B.H.: Uncertainty quantification in brain tumor segmentation using CRFs and random perturbation models. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 428–431 (2016)Google Scholar
  19. 19.
    Meier, R., Knecht, U., Jungo, A., Wiest, R., Reyes, M.: Perturb-and-MPM: quantifying segmentation uncertainty in dense multi-label CRFs. CoRR abs/1703.00312 (2017). http://arxiv.org/abs/1703.00312
  20. 20.
    Liu, J.S.: Monte Carlo Strategies in Scientific Computing. Springer, New York (2001)MATHGoogle Scholar
  21. 21.
    Mehlhorn, K., Näher, S., Sanders, P.: Engineering DFS-based graph algorithms. CoRR abs/1703.10023 (2017). http://arxiv.org/abs/1703.10023
  22. 22.
    Gumbel, E.J.: Statistical theory of extreme values and some practical applications: a series of lectures. No. 33, US Govt. Print. Office (1954)Google Scholar
  23. 23.
    Staal, J.J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., Van Ginneken, B.: Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)CrossRefGoogle Scholar
  24. 24.
    Sironi, A., Türetken, E., Lepetit, V., Fua, P.: Multiscale centerline detection. IEEE Trans. Pattern Anal. Mach. Intell. 1, 1–14 (2015)Google Scholar
  25. 25.
    Gurobi Optimization, Inc.: Gurobi Optimizer Reference Manual (2017). http://www.gurobi.com

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Markus Rempfler
    • 1
    • 2
  • Bjoern Andres
    • 3
  • Bjoern H. Menze
    • 1
    • 2
  1. 1.Institute for Advanced StudyTechnical University of MunichMunichGermany
  2. 2.Department of InformaticsTechnical University of MunichMunichGermany
  3. 3.Bosch Center for Artificial Intelligence (BCAI)RenningenGermany

Personalised recommendations