Advertisement

Prediction of the Progression of Subcortical Brain Structures in Alzheimer’s Disease from Baseline

  • Alexandre Bône
  • Maxime Louis
  • Alexandre Routier
  • Jorge Samper
  • Michael Bacci
  • Benjamin Charlier
  • Olivier Colliot
  • Stanley Durrleman
  • the Alzheimer’s Disease Neuroimaging Initiative
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10551)

Abstract

We propose a method to predict the subject-specific longitudinal progression of brain structures extracted from baseline MRI, and evaluate its performance on Alzheimer’s disease data. The disease progression is modeled as a trajectory on a group of diffeomorphisms in the context of large deformation diffeomorphic metric mapping (LDDMM). We first exhibit the limited predictive abilities of geodesic regression extrapolation on this group. Building on the recent concept of parallel curves in shape manifolds, we then introduce a second predictive protocol which personalizes previously learned trajectories to new subjects, and investigate the relative performances of two parallel shifting paradigms. This design only requires the baseline imaging data. Finally, coefficients encoding the disease dynamics are obtained from longitudinal cognitive measurements for each subject, and exploited to refine our methodology which is demonstrated to successfully predict the follow-up visits.

Notes

Acknowledgments

This work has been partly funded by the European Research Council (ERC) under grant agreement No 678304, European Union’s Horizon 2020 research and innovation program under grant agreement No 666992, and the program Investissements d’avenir ANR-10-IAIHU-06.

References

  1. 1.
    Beg, M., Miller, M., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. IJCV 61(2), 139–157 (2005)CrossRefGoogle Scholar
  2. 2.
    Durrleman, S., Allassonnière, S., Joshi, S.: Sparse adaptive parameterization of variability in image ensembles. IJCV 101(1), 161–183 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Durrleman, S., Prastawa, M., Charon, N., Korenberg, J.R., Joshi, S., Gerig, G., Trouvé, A.: Morphometry of anatomical shape complexes with dense deformations and sparse parameters. NeuroImage 101, 35–49 (2014)CrossRefGoogle Scholar
  4. 4.
    Fishbaugh, J., Prastawa, M., Gerig, G., Durrleman, S.: Geodesic regression of image and shape data for improved modeling of 4D trajectories. In: Proceedings of the International Symposium on Biomedical Imaging (2014)Google Scholar
  5. 5.
    Fletcher, T.: Geodesic regression and the theory of least squares on riemannian manifolds. IJCV 105(2), 171–185 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Hadj-Hamou, M., Lorenzi, M., Ayache, N., Pennec, X.: Longitudinal analysis of image time series with diffeomorphic deformations: A computational framework based on stationary velocity fields. Front. Neurosci. 10, 236 (2016)CrossRefGoogle Scholar
  7. 7.
    Hong, Y., Singh, N., Kwitt, R., Niethammer, M.: Time-warped geodesic regression. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8674, pp. 105–112. Springer, Cham (2014). doi: 10.1007/978-3-319-10470-6_14 Google Scholar
  8. 8.
    Lorenzi, M., Ayache, N., Frisoni, G., Pennec, X.: 4D registration of serial brain MR images: a robust measure of changes applied to Alzheimer’s disease. In: MICCAI, Spatio Temporal Image Analysis Workshop (STIA) (2010)Google Scholar
  9. 9.
    Lorenzi, M., Ayache, N., Pennec, X.: Schild’s ladder for the parallel transport of deformations in time series of images. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 463–474. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22092-0_38 CrossRefGoogle Scholar
  10. 10.
    Lorenzi, M., Pennec, X.: Geodesics, parallel transport & one-parameter subgroups for diffeomorphic image registration. IJCV 105(2), 111–127 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Metz, C., Klein, S., Schaap, M., van Walsum, T., Niessen, W.: Nonrigid registration of dynamic medical imaging data using nD + t B-splines and a groupwise optimization approach. Med. Image Anal. 15(2), 238–249 (2011)CrossRefGoogle Scholar
  12. 12.
    Peyrat, J.-M., Delingette, H., Sermesant, M., Pennec, X., Xu, C., Ayache, N.: Registration of 4D time-series of cardiac images with multichannel diffeomorphic demons. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008. LNCS, vol. 5242, pp. 972–979. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85990-1_117 CrossRefGoogle Scholar
  13. 13.
    Qiu, A., Younes, L., Miller, M.I., Csernansky, J.G.: Parallel transport in diffeomorphisms distinguishes the time-dependent pattern of hippocampal surface deformation due to healthy aging and the dementia of the Alzheimer’s type. NeuroImage 40(1), 68–76 (2008)CrossRefGoogle Scholar
  14. 14.
    Schiratti, J.B., Allassonnière, S., Colliot, O., Durrleman, S.: Learning spatiotemporal trajectories from manifold-valued longitudinal data. In: NIPS, vol. 28 (2015)Google Scholar
  15. 15.
    Singh, N., Hinkle, J., Joshi, S., Fletcher, P.T.: Hierarchical geodesic models in diffeomorphisms. IJCV 117(1), 70–92 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Non-parametric diffeomorphic image registration with the demons algorithm. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007. LNCS, vol. 4792, pp. 319–326. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-75759-7_39 CrossRefGoogle Scholar
  17. 17.
    Wang, L., Beg, F., Ratnanather, T., Ceritoglu, C., Younes, L., Morris, J.C., Csernansky, J.G., Miller, M.I.: Large deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of the Alzheimer type. IEEE Trans. Med. Imaging 26(4), 462–470 (2007)CrossRefGoogle Scholar
  18. 18.
    Wu, G., Wang, Q., Lian, J., Shen, D.: Estimating the 4D respiratory lung motion by spatiotemporal registration and building super-resolution image. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6891, pp. 532–539. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-23623-5_67 CrossRefGoogle Scholar
  19. 19.
    Younes, L.: Jacobi fields in groups of diffeomorphisms and applications. Q. Appl. Math. 65(1), 113–134 (2007)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alexandre Bône
    • 1
    • 2
  • Maxime Louis
    • 1
    • 2
  • Alexandre Routier
    • 1
    • 2
  • Jorge Samper
    • 1
    • 2
  • Michael Bacci
    • 1
    • 2
  • Benjamin Charlier
    • 2
    • 3
  • Olivier Colliot
    • 1
    • 2
  • Stanley Durrleman
    • 1
    • 2
  • the Alzheimer’s Disease Neuroimaging Initiative
  1. 1.Sorbonne Universités, UPMC Université Paris 06, Inserm, CNRS, Institut du Cerveau et de la Moelle (ICM) - Hôpital Pitié-SalpêtrièreParisFrance
  2. 2.Aramis Project-teamInria ParisParisFrance
  3. 3.Université de MontpellierMontpellierFrance

Personalised recommendations