Advertisement

Burden and Risk Assessment of Foodborne Parasites

  • Brecht Devleesschauwer
  • Pierre Dorny
  • Christel Faes
  • Arie H. Havelaar
  • Paul R. Torgerson
  • Niko Speybroeck
Chapter
Part of the Food Microbiology and Food Safety book series (FMFS)

Abstract

Burden and risk assessment play an increasingly important and accepted role in defining control policies for foodborne parasites (FBPs). Burden assessment is a top-down approach, starting from available epidemiological data, while risk assessment is a bottom-up or predictive approach, starting from exposure and dose-response data. Both methods however share a common goal of generating estimates of the health and economic impacts of the concerned hazards. These estimates can be used to generate an evidence-based ranking of the impact of FBPs (i.e. risk ranking) and a baseline against which the effects of interventions can be evaluated. Risk assessment further provides a scientific framework for evaluating the potential effects of intervention measures and, by combining with economic models, the expected efficiency of such measures.

Keywords

Burden of disease Cost of illness Disability-adjusted life years Dose-response assessment Exposure assessment Foodborne parasites Risk assessment Risk characterisation Risk ranking 

Abbreviations

DALY

Disability-adjusted life year

FBP

Foodborne parasite

FERG

Foodborne Disease Burden Epidemiology Reference Group

GBD

Global Burden of Disease

MCDA

Multi-criteria decision analysis

MPRM

Modular process risk model

QMRA

Quantitative microbiological risk assessment

SMPH

Summary measure of population health

YLD

Years lived with disability

YLL

Years of life lost

References

  1. Anderson, M., Jaykus, L. A., Beaulieu, S., & Dennis, S. (2011). Pathogen-produce pair attribution risk ranking tool to prioritize fresh produce commodity and pathogen combinations for further evaluation (P3ARRT). Food Control, 22(12), 1865–1872.CrossRefGoogle Scholar
  2. Baranyi, J., & Tamplin, M. L. (2004). ComBase: A common database on microbial responses to food environments. Journal of Food Protection, 67(9), 1967–1971.CrossRefGoogle Scholar
  3. Batz, M. B., Hoffmann, S., & Morris, J. G. (2012). Ranking the disease burden of 14 pathogens in food sources in the United States using attribution data from outbreak investigations and expert elicitation. Journal of Food Protection, 75(7), 1278–1291.CrossRefGoogle Scholar
  4. Bollaerts, K., Aerts, M., Faes, C., Grijspeerdt, K., Dewulf, J., & Mintiens, K. (2008). Human salmonellosis: Estimation of dose-illness from outbreak data. Risk Analysis, 28(2), 427–440.CrossRefGoogle Scholar
  5. Buchanan, R. (1998). Principles of risk assessment for illness caused by foodborne biological agents. National Advisory Committee on Microbiological Criteria for Foods. Journal of Food Protection®, 1(8), 1071–1074.Google Scholar
  6. Buchanan, R. L., Smith, J. L., & Long, W. (2000). Microbial risk assessment: Dose-response relations and risk characterization. International Journal of Food Microbiology, 58, 159–172.CrossRefGoogle Scholar
  7. Budke, C. M., Deplazes, P., & Torgerson, P. R. (2006). Global socioeconomic impact of cystic echinococcosis. Emerging Infectious Diseases, 12(2), 296–303.CrossRefGoogle Scholar
  8. Cardoen, S., Van Huffel, X., Berkvens, D., Quoilin, S., Ducoffre, G., Saegerman, C., et al. (2009). Evidence-based semiquantitative methodology for prioritization of foodborne zoonoses. Foodborne Pathogens and Disease, 6(9), 1083–1096.CrossRefGoogle Scholar
  9. Chen, Y., Dennis, S. B., Hartnett, E., Paoli, G., Pouillot, R., Ruthman, T., et al. (2013). FDA-iRISK–a comparative risk assessment system for evaluating and ranking food-hazard pairs: case studies on microbial hazards. Journal of Food Protection, 76(3), 376–385.Google Scholar
  10. Chappell, C. L., Okhuysen, P. C., Sterling, C. R., Wang, C., Jakubowski, W., & Dupont, H. L. (1999). Infectivity of Cryptosporidium parvum in healthy adults with pre-existing anti-C. parvum serum immunoglobulin G. The American Journal of Tropical Medicine and Hygiene, 60(1), 157–164.Google Scholar
  11. CAC (Codex Alimentarius Commission). (1999). Principles and Guidelines for the Conduct of a Microbiological Risk Assessment, FAO, Rome, CAC/GL-30.Google Scholar
  12. Delignette-Muller, M. L., Cornu, M., Pouillot, R., & Denis, J. B. (2006). Use of Bayesian modelling in risk assessment: Application to growth of Listeria monocytogenes and food flora in cold-smoked salmon. International Journal of Food Microbiology, 106(2), 195–208.CrossRefGoogle Scholar
  13. Derouin, F., Bultel, C., & Roze, S. (2005). Toxoplasmose: état des connaissances et évaluation du risque lié àl'alimentation. Rapport du groupe de travail “Toxoplasma gondii” l’AFSSA. Agence Française de SécuritéSanitaire des Aliments.Google Scholar
  14. Devleesschauwer, B., Maertens de Noordhout, C., Smit, G. S., Duchateau, L., Dorny, P., Stein, C., et al. (2014a). Quantifying burden of disease to support public health policy in Belgium: Opportunities and constraints. BMC Public Health, 14, 1196.CrossRefGoogle Scholar
  15. Devleesschauwer, B., Ale, A., Torgerson, P., Praet, N., Maertens de Noordhout, C., Pandey, B. D., et al. (2014b). The burden of parasitic zoonoses in Nepal: A systematic review. PLoS Neglected Tropical Diseases, 8(1), e2634.CrossRefGoogle Scholar
  16. Devleesschauwer, B., Havelaar, A. H., Maertens de Noordhout, C., Haagsma, J. A., Praet, N., Dorny, P., et al. (2014c). Calculating disability-adjusted life years to quantify burden of disease. International Journal of Public Health, 59(3), 565–569.CrossRefGoogle Scholar
  17. Devleesschauwer, B., Havelaar, A. H., Maertens de Noordhout, C., Haagsma, J. A., Praet, N., Dorny, P., et al. (2014d). DALY calculation in practice: A stepwise approach. International Journal of Public Health, 59(3), 571–574.CrossRefGoogle Scholar
  18. Devleesschauwer, B., Haagsma, J. A., Angulo, F. J., Bellinger, D. C., Cole, D., Döpfer, D., et al. (2015a). Methodological framework for World Health Organization estimates of the global burden of foodborne disease. PloS One, 10(12), e0142498.CrossRefGoogle Scholar
  19. Dubey, J. P. (1997). Bradyzoite-induced murine toxoplasmosis: stage conversion, pathogenesis, and tissue cyst formation in mice fed bradyzoites of different strains of Toxoplasma gondii. The Journal of Eukaryotic Microbiology, 44(6), 592–602.Google Scholar
  20. DuPont, H. L., Chappell, C. L., Sterling, C. R., Okhuysen, P. C., Rose, J. B., & Jakubowski, W. (1995). The infectivity of Cryptosporidium parvum in healthy volunteers. New England Journal of Medicine, 332(13), 855–859.Google Scholar
  21. Devleesschauwer, B., Praet, N., Speybroeck, N., Torgerson, P. R., Haagsma, J. A., De Smet, K., et al. (2015b). The low global burden of trichinellosis: Evidence and implications. International Journal for Parasitology, 45(2–3), 95–99.CrossRefGoogle Scholar
  22. FAO/WHO (Food and Agriculture Organization of the United Nations and World Health Organization). (2014). Multicriteria-Based Ranking for Risk Management of Food-borne Parasites. Report of a Joint FAO/WHO Expert Meeting, 3–7 September 2012, FAO Headquarters Rome Italy. http://www.fao.org/3/a-i3649e.pdf
  23. Furumoto, W. A., & Mickey, R. (1967). A mathematical model for the infectivity-dilution curve of tobacco mosaic virus: Theoretical considerations. Virology, 32(2), 216–223.CrossRefGoogle Scholar
  24. Gemmell, M. A. (1990). Australasian contributions to an understanding of the epidemiology and control of hydatid disease caused by Echinococcus granulosus--past, present and future. International Journal for Parasitology, 20(4), 431–456.CrossRefGoogle Scholar
  25. Greiner, M., Smid, J., Havelaar, A. H., & Müller-Graf, C. (2013). Graphical models and Bayesian domains in risk modelling: Application in microbiological risk assessment. Preventive Veterinary Medicine, 110(1), 4–11.CrossRefGoogle Scholar
  26. Guo, M., Buchanan, R. L., Dubey, J. P., Hill, D. E., Lambertini, E., Ying, Y., et al. (2015). Qualitative assessment for Toxoplasma gondii exposure risk associated with meat products in the United States. Journal of Food Protection, 78(12), 2207–2219.CrossRefGoogle Scholar
  27. Haas, C. N. (1983). Estimation of risk due to the doses of microorganisms: A comparison of alternative methodologies. American Journal of Epidemiology, 188, 573–582.CrossRefGoogle Scholar
  28. Haas, C. N., & Rose, J. B. (1996). Distribution of Cryptosporidium oocysts in a water supply. Water Research, 30(10), 2251–2254.CrossRefGoogle Scholar
  29. Haas, C. N., Rose, J. B., Gerba, C., & Regli, S. (1993). Risk assessment of virus in drinking water. Risk Analysis, 13(5), 545–552.CrossRefGoogle Scholar
  30. Haas, C. N., Rose, J. B., & Gerba, C. P. (2014). Quantitative microbial risk assessment (2nd ed.). New York: Wiley.Google Scholar
  31. Havelaar, A. H., & Swart, A. N. (2014). Impact of acquired immunity and dose-dependent probability of illness on quantitative microbial risk assessment. Risk Analysis, 34(10), 1807–1819.CrossRefGoogle Scholar
  32. Havelaar, A. H., van Rosse, F., Bucura, C., Toetenel, M. A., Haagsma, J. A., Kurowicka, D., et al. (2010). Prioritizing emerging zoonoses in the Netherlands. PloS One, 5(11), e13965.CrossRefGoogle Scholar
  33. Havelaar, A. H., Haagsma, J. A., Mangen, M. J., Kemmeren, J. M., Verhoef, L. P., Vijgen, S. M., et al. (2012). Disease burden of foodborne pathogens in the Netherlands, 2009. International Journal of Food Microbiology, 156(3), 231–238.CrossRefGoogle Scholar
  34. Havelaar, A. H., Kirk, M. D., Torgerson, P. R., Gibb, H. J., Hald, T., Lake, R. J., et al. (2015). World Health Organization Foodborne Disease Burden Epidemiology Reference Group. World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Medicine, 12(12), e1001923.CrossRefGoogle Scholar
  35. Holcomb, D. L., Smith, M. A., Ware, G. O., Hung, Y.-C., Brackett, R. E., & Doyle, M. P. (1999). Comparison of six dose-response models for use with food-borne pathogens. Risk Analysis, 19(6), 1091–1100.Google Scholar
  36. Jaykus, L.-A. (1996). The application of quantitative risk assessment to microbial food safety risks. Critical Reviews in Microbiology, 22, 279–293.CrossRefGoogle Scholar
  37. Jongenburger, I., Bassett, J., Jackson, T., Zwietering, M., & Jewell, K. (2012). Impact of microbial distributions on food safety I. Factors influencing microbial distributions and modelling aspects. Food Control, 26(2), 601–609.CrossRefGoogle Scholar
  38. Knopp, S., Steinmann, P., Keiser, J., & Utzinger, J. (2012). Nematode infections: Soil-transmitted helminths and Trichinella. Infectious Disease Clinics of North America, 26(2), 341–358.CrossRefGoogle Scholar
  39. Lammerding, A. M., & Fazil, A. (2000). Hazard identification and exposure assessment for microbial food safety risk assessment. International Journal of Food Microbiology, 58(3), 147–157.CrossRefGoogle Scholar
  40. Lammerding, A. M., & Paoli, G. M. (1997). Quantitative risk assessment: An emerging tool for emerging food-borne pathogens. Emerging Infectious Diseases, 3, 483–487.CrossRefGoogle Scholar
  41. Macler, B. A., & Regli, S. (1993). Use of microbial risk assessment in setting US drinking water standards. International Journal of Food Microbiology, 18(4), 245–256.CrossRefGoogle Scholar
  42. Machdar, E., van der Steen, N. P., Raschid-Sally, L., & Lens, P. N. (2013). Application of Quantitative Microbial Risk Assessment to analyze the public health risk from poor drinking water quality in a low income area in Accra, Ghana. The Science of the Total Environment, 449, 134–142.Google Scholar
  43. Mangen, M. J., Havelaar, A. H., Poppe, K. P., de Wit, G. A., & Project Team, C. A. R. M. A. (2007). Cost-utility analysis to control Campylobacter on chicken meat: Dealing with data limitations. Risk Analysis, 27(4), 815–830.CrossRefGoogle Scholar
  44. Mangen, M. J., Batz, M. B., Käsbohrer, A., Hald, T., Morris, J. G., Taylor, M., et al. (2010). Integrated approaches for the public health prioritization of foodborne and zoonotic pathogens. Risk Analysis, 30(5), 782–797.CrossRefGoogle Scholar
  45. Mangen, M. J., Plass, D., Havelaar, A. H., Gibbons, C. L., Cassini, A., Mühlberger, N., et al. (2013). BCoDE Consortium. The pathogen- and incidence-based DALY approach: An appropriate [corrected] methodology for estimating the burden of infectious diseases. PloS One, 8(11), e79740.CrossRefGoogle Scholar
  46. Mangen, M. J., Bouwknegt, M., Friesema, I. H., Haagsma, J. A., Kortbeek, L. M., Tariq, L., et al. (2015). Cost-of-illness and disease burden of food-related pathogens in the Netherlands, 2011. International Journal of Food Microbiology, 196, 84–93.CrossRefGoogle Scholar
  47. Mena, K. D. (2006). Risk assessment of parasites in food. In Y. R. Ortega (Ed.), Foodborne parasites (pp. 275–284). New York: Springer.CrossRefGoogle Scholar
  48. Messner, M. J., & Berger, P. (2016). Cryptosporidium infection risk: Results of new dose-response modelling. Risk Analysis, 36(10), 1969–1982.CrossRefGoogle Scholar
  49. Messner, M. J., Chappell, C. L., & Okhuysen, P. C. (2001). Risk assessment for Cryptosporidium: A hierarchical Bayesian analysis of human dose response data. Water Research, 35(16), 3934–3940.CrossRefGoogle Scholar
  50. Miconnet, N., Cornu, M., Beaufort, A., Rosso, L., & Denis, J. B. (2005). Uncertainty distribution associated with estimating a proportion in microbial risk assessment. Risk Analysis, 25(1), 39–48.CrossRefGoogle Scholar
  51. Murray, C. J. (1994). Quantifying the burden of disease: The technical basis for disability-adjusted life years. Bulletin of the World Health Organization, 72(3), 429–445.Google Scholar
  52. Murray, C. J., & Lopez, A. D. (2013). Measuring the global burden of disease. The New England Journal of Medicine, 369(5), 448–457.CrossRefGoogle Scholar
  53. Murray, C. J., Ezzati, M., Flaxman, A. D., Lim, S., Lozano, R., Michaud, C., et al. (2012). GBD 2010: Design, definitions, and metrics. Lancet, 380(9859), 2063–2066.CrossRefGoogle Scholar
  54. Murrell, K. D. (1991). Economic losses resulting from food-borne parasitic zoonoses. The Southeast Asian Journal of Tropical Medicine and Public Health, 22(Suppl), 377–381.Google Scholar
  55. Namata, H., Aerts, M., Faes, C., & Teunis, P. (2008). Model averaging in microbial risk assessment using fractional polynomials. Risk Analysis, 28(4), 891–905.CrossRefGoogle Scholar
  56. Nauta, M. J. (2008). The Modular Process Risk Model (MPRM): A structured approach to food chain exposure assessment. In D. Schaffner & M. Doyle (Eds.), Microbial risk analysis of foods (pp. 99–136). Washington DC: ASM Press.CrossRefGoogle Scholar
  57. Navarro, I., Jiménez, B., Lucario, S., & Cifuentes, E. (2009). Application of Helminth ova infection dose curve toestimate the risks associated with biosolid application on soil. Journal of Water and Health, 7(1), 31–44.Google Scholar
  58. Newsome, R., Tran, N., Paoli, G. M., Jaykus, L. A., Tompkin, B., Miliotis, M., et al. (2009). Development of a risk-ranking framework to evaluate potential high-threat microorganisms, toxins, and chemicals in food. Journal of Food Science, 74(2), R39–R45.CrossRefGoogle Scholar
  59. Okhuysen, P. C., Chappell, C. L., Crabb, J. H., Sterling, C. R., & DuPont, H. L. (1999). Virulence of three distinct Cryptosporidium parvum isolates for healthy adults. The Journal of Infectious Diseases, 180(4), 1275–1281.Google Scholar
  60. Opsteegh, M., Prickaerts, S., Frankena, K., & Evers, E. G. (2011). A quantitative microbial risk assessment for meatborne Toxoplasma gondii infection in The Netherlands. International Journal of Food Microbiology, 150(2–3), 103–114.CrossRefGoogle Scholar
  61. Polinder, S., Haagsma, J. A., Stein, C., & Havelaar, A. H. (2012). Systematic review of general burden of disease studies using disability-adjusted life years. Population Health Metrics, 10(1), 21.CrossRefGoogle Scholar
  62. Pouillot, R., Beaudeau, P., Denis, J. B., Derouin, F.; AFSSA Cryptosporidium Study Group (2004). A quantitative risk assessment of waterborne cryptosporidiosis in France using second-order Monte Carlo simulation. Risk Analysis, 24(1), 1–17.Google Scholar
  63. Pouillot, R., & Delignette-Muller, M. L. (2010). Evaluating variability and uncertainty separately in microbial quantitative risk assessment using two R packages. International Journal of Food Microbiology, 142(3), 330–340.CrossRefGoogle Scholar
  64. Prüss-Üstün, A., Mathers, C., Corvalán, C., & Woodward, A. (2003). Assessing the environmental burden of disease at national and local levels. Introduction and methods (Environmental burden of disease series, A. Prüss-Üstün, D. Campbell-Lendrum, C. Corvalán, & A. Woodward, Eds.). Geneva: World Health Organization Press.Google Scholar
  65. Roberts, T., Murrell, K. D., & Marks, S. (1994). Economic losses caused by foodborne parasitic diseases. Parasitology Today, 10(11), 419–423.CrossRefGoogle Scholar
  66. Robertson, L. J., Sehgal, R., & Goyal, K. (2015). An Indian multicriteria-based risk ranking of foodborne parasites. Food Research International, 77, 315–319.CrossRefGoogle Scholar
  67. Rose, J. B., Haas, C. N., & Regli, S. (1991). Risk assessment and control of waterborne giardiasis. American Journal of Public Health, 81, 709–713.CrossRefGoogle Scholar
  68. Ross, T., & Sumner, J. (2002). A simple, spreadsheet-based, food safety risk assessment tool. International Journal of Food Microbiology, 77(1–2), 39–53.CrossRefGoogle Scholar
  69. Schmidt, P. J., Pintar, K. D., Fazil, A. M., Flemming, C. A., Lanthier, M., Laprade, N., et al. (2013). Using Campylobacter spp. and Escherichia coli data and Bayesian microbial risk assessment to examine public health risks in agricultural watersheds under tile drainage management. Water Research, 47(10), 3255–3272.CrossRefGoogle Scholar
  70. Schönning, C., Westrell, T., Stenström, T. A., Arnbjerg-Nielsen, K., Hasling, A. B., Høibye, L., et al. (2007). Microbial risk assessment of local handling and use of human faeces. Journal of Water and Health, 5(1), 117–128.Google Scholar
  71. Schroeder, C. M., Jensen, E., Miliotis, M. D., Dennis, S. B., & Morgan, K. M. (2007). Microbial risk assessment. In S. Simjee (Ed.), Foodborne diseases (pp. 435–455). New York: Springer.CrossRefGoogle Scholar
  72. Smid, J. H., Verloo, D., Barker, G. C., & Havelaar, A. H. (2010). Strengths and weaknesses of Monte Carlo simulation models and Bayesian belief networks in microbial risk assessment. International Journal of Food Microbiology, 139(Suppl 1), 57–63.CrossRefGoogle Scholar
  73. Smith, G. (2014). Estimating the population attributable fraction for schizophrenia when Toxoplasma gondii is assumed absent in human populations. Preventive Veterinary Medicine, 117(3–4), 425–435.CrossRefGoogle Scholar
  74. Stella, P., Cerf, O., Hugas, M., Koutsoumanis, K. P., Nguyen-The, C., Sofos, J. N., et al. (2013). Ranking the microbiological safety of foods: A new tool and its application to composite products. Trends in Food Science and Technology, 33(2), 124–138.CrossRefGoogle Scholar
  75. Takumi, K., Teunis, P., Fonville, M., Vallee, I., Boireau, P., Nöckler, K., et al. (2009). Transmission risk of humantrichinellosis. Veterinary Parasitology, 159(3-4), 324–327.Google Scholar
  76. Teunis, P. F., & Havelaar, A. H. (2000). The Beta Poisson dose-response model is not a single-hit model. Risk Analysis, 20, 513–520.CrossRefGoogle Scholar
  77. Teunis, P. F., Koningstein, M., Takumi, K., & van der Giessen J.W. (2012). Human beings are highly susceptible to low doses of Trichinella spp. Epidemiology and Infection, 140(2), 210–218.Google Scholar
  78. Teunis, P. F. M., Nagelkerke, N. J. D., & Haas, C. N. (1999). Dose response models for infectious gastroenteritis. Risk Analysis, 19(6), 1251–1260.Google Scholar
  79. Teunis, P. F. M., Chappell, C. L., & Okhuysen, P. C. (2002a). Cryptosporidium dose response studies: Variation between isolates. Risk Analysis, 22(1), 175–183.CrossRefGoogle Scholar
  80. Teunis, P. F., Chappell, C. L., & Okhuysen, P. C. (2002b). Cryptosporidium dose-response studies: Variation between hosts. Risk Analysis, 22(3), 475–485.CrossRefGoogle Scholar
  81. Torgerson, P. R., Schweiger, A., Deplazes, P., Pohar, M., Reichen, J., Ammann, R. W., et al. (2008). Alveolar echinococcosis: from a deadly disease to a well-controlled infection. Relative survival and economic analysis in Switzerland over the last 35 years. Journal of Hepatology, 49(1), 72–77.Google Scholar
  82. Torgerson, P. R. (2013). One world health: Socioeconomic burden and parasitic disease control priorities. Veterinary Parasitology, 195(3–4), 223–232.CrossRefGoogle Scholar
  83. Torgerson, P. R., & Macpherson, C. N. (2011). The socioeconomic burden of parasitic zoonoses: Global trends. Veterinary Parasitology, 182(1), 79–95.CrossRefGoogle Scholar
  84. Torgerson, P. R., Devleesschauwer, B., Praet, N., Speybroeck, N., Willingham, A. L., Kasuga, F., et al. (2015). World Health Organization estimates of the global and regional disease burden of 11 foodborne parasitic diseases, 2010: A data synthesis. PLoS Medicine, 12(12), e1001920.CrossRefGoogle Scholar
  85. Trevisan, C., Devleesschauwer, B., Schmidt, V., Winkler, A. S., Harrison, W., & Johansen, M. V. (2017). The societal cost of Taenia solium cysticercosis in Tanzania. Acta Tropica, 165, 141–154.CrossRefGoogle Scholar
  86. van Baal, P. H., Wong, A., Slobbe, L. C., Polder, J. J., Brouwer, W. B., & de Wit, G. A. (2011). Standardizing the inclusion of indirect medical costs in economic evaluations. PharmacoEconomics, 29(3), 175–187.CrossRefGoogle Scholar
  87. WHO (World Health Organization). (2013). WHO methods and data sources for global burden of disease estimates 2000–2011. Global Health Estimates Technical Paper. WHO/HIS/HSI/GHE/2013.4. Available: http://www.who.int/healthinfo/statistics/GlobalDALYmethods_2000_2011.pdf
  88. WHO/FAO (World Health Organization and Food and Agriculture Organization of the United Nations). (2008). Exposure assessment of microbiological hazards in food. Microbiological Risk Assessment Series No 7. World Health Organization and Food and Agriculture Organization of the United Nations.Google Scholar
  89. WHO/FAO (World Health Organization and Food and Agriculture Organization of the United Nations). (2009). Risk characterization of microbiological hazards in food. Microbiological Risk Assessment Series No 17. World Health Organization and Food and Agriculture Organization of the United Nations.Google Scholar
  90. Williams, M. S., Ebel, E. D., & Hoeting, J. A. (2011). Bayesian analysis for food-safety risk assessment: Evaluation of dose-response functions within WinBUGS. Journal of Statistical Software, 43(c02).  10.18637/jss.v043.c02.

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Brecht Devleesschauwer
    • 1
  • Pierre Dorny
    • 2
    • 3
  • Christel Faes
    • 4
  • Arie H. Havelaar
    • 5
  • Paul R. Torgerson
    • 6
  • Niko Speybroeck
    • 7
  1. 1.Department of Public Health and SurveillanceScientific Institute of Public Health (WIV-ISP)BrusselsBelgium
  2. 2.Department of Biomedical SciencesInstitute of Tropical MedicineAntwerpBelgium
  3. 3.Department of Virology, Parasitology and ImmunologyGhent UniversityMerelbekeBelgium
  4. 4.Interuniversity Institute for Biostatistics and Statistical BioinformaticsHasselt UniversityHasseltBelgium
  5. 5.Emerging Pathogens Institute, Institute for Sustainable Food Systems and Department of Animal SciencesUniversity of FloridaGainesvilleUSA
  6. 6.Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
  7. 7.Institute of Health and Society (IRSS)Université catholique de LouvainBrusselsBelgium

Personalised recommendations