Advertisement

Illumination Analysis in Physics-Based Image Forensics: A Joint Discussion of Illumination Direction and Color

  • Christian Riess
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 766)

Abstract

Illumination direction and color are two physics-based forensic cues that are based on the same underlying model. In this work, we discuss these methods in the light of their joint physical model, with a particular focus on the limitations and a qualitative study of failure cases of these methods. Our goal is to provide directions for future research to further reduce the list of constraints that these methods require in order to work. We hope that this eventually broadens the applicability of physics-based methods, and to spread their main advantage, namely their stringent models for deviations of the expected image formation.

Keywords

Blind passive image forensics Physics-based image forensics Illumination environments Illumination color 

Notes

Acknowledgements

This material is based on research sponsored by the Air Force Research Laboratory and the Defense Advanced Research Projects Agency under agreement number FA8750-16-2-0204. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon.

The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Research Laboratory and the Defense Advanced Research Projects Agency or the U.S. Government.

References

  1. 1.
    Barni, M., Chen, Z., Tondi, B.: Adversary-aware, data-driven detection of double JPEG compression: how to make counter-forensics harder. In: IEEE International Workshop on Information Forensics and Security, December 2016Google Scholar
  2. 2.
    Bayar, B., Stamm, M.C.: A deep learning approach to universal image manipulation detection using a new convolutional layer. In: ACM Workshop on Information Hiding and Multimedia Security, pp. 5–10, June 2016Google Scholar
  3. 3.
    Bianchi, T., Piva, A., Perez-Gonzalez, F.: Near optimal detection of quantized signals and application to JPEG forensics. In: IEEE International Workshop on Information Forensics and Security, pp. 168–173, November 2013Google Scholar
  4. 4.
    Chen, M., Fridrich, J., Goljan, M., Lukás, J.: Determining image origin and integrity using sensor noise. IEEE Trans. Inf. Forensics Secur. 3(1), 74–90 (2008)CrossRefGoogle Scholar
  5. 5.
    Christlein, V., Riess, C., Jordan, J., Riess, C., Angelopoulou, E.: An evaluation of popular copy-move forgery detection approaches. IEEE Trans. Inf. Forensics Secur. 7(6), 1841–1854 (2012)CrossRefGoogle Scholar
  6. 6.
    Cozzolino, D., Poggi, G., Verdoliva, L.: Efficient dense-field copy-move forgery detection. IEEE Trans. Inf. Forensics Secur. 10(11), 2284–2297 (2015)CrossRefGoogle Scholar
  7. 7.
    Cozzolino, D., Poggi, G., Verdoliva, L.: Splicebuster: a new blind image splicing detector. In: IEEE International Workshop on Information Forensics and Security, pp. 1–6 (2015)Google Scholar
  8. 8.
    de Carvalho, T.J., Faria, F.A., Pedrini, H., Torres, R.S., Rocha, A.: Illuminant-based transformed spaces for image forensics. IEEE Trans. Inf. Forensics Secur. 11(4), 720–733 (2015)CrossRefGoogle Scholar
  9. 9.
    de Carvalho, T.J., Riess, C., Angelopoulou, E., Pedrini, H., Rocha, A.: Exposing digital image forgeries by illumination color classification. IEEE Trans. Inf. Forensics Secur. 8(7), 1182–1194 (2013)CrossRefGoogle Scholar
  10. 10.
    Deng, Z., Gijsenij, A., Zhang, J.: Source camera identification using auto-white balance approximation. In: Proceedings of the 13th IEEE International Conference on Computer Vision (ICCV 2011), Barcelona, Spain, pp. 57–64, November 2011Google Scholar
  11. 11.
    Fan, W., Wang, K., Cayre, F., Xiong, Z.: 3D lighting-based image forgery detection using shape-from-shading. In: Proceedings of the 20th European Signal Processing Conference (EUSIPCO-2012), Bucarest, Romania, pp. 1777–1781, August 2012Google Scholar
  12. 12.
    Farid, H.: Photo Forensics. MIT Press, Cambridge (2016)Google Scholar
  13. 13.
    Gholap, S., Bora, P.K.: Illuminant colour based image forensics. In: IEEE Region 10 Conference TENCON (TENCON 2008), Hyderabad, India, November 2008Google Scholar
  14. 14.
    Iuliani, M., Fanfani, M., Colombo, C., Piva, A.: Reliability assessment of principal point estimates for forensic applications. J. Vis. Commun. Image Representation 42(1), 65–77 (2017)CrossRefGoogle Scholar
  15. 15.
    Johnson, M., Farid, H.: Exposing digital forgeries in complex lighting environments. IEEE Trans. Inf. Forensics Secu. 2(3), 450–461 (2007)CrossRefGoogle Scholar
  16. 16.
    Johnson, M.K., Farid, H.: Detecting photographic composites of people. In: Shi, Y.Q., Kim, H.-J., Katzenbeisser, S. (eds.) IWDW 2007. LNCS, vol. 5041, pp. 19–33. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-92238-4_3 CrossRefGoogle Scholar
  17. 17.
    Kee, E., Farid, H.: Exposing digital forgeries from 3-D lighting environments. In: Proceedings of the 2nd IEEE International Workshop on Information Forensics and Security (WIFS 2010), Seattle, WA, USA, December 2010Google Scholar
  18. 18.
    Kee, E., O’Brien, J.F., Farid, H.: Exposing photo manipulation from shading and shadows. ACM Trans. Graph. 33(5), 165:1–165:21 (2014)CrossRefGoogle Scholar
  19. 19.
    Kirchner, M.: Linear row and column predictors for the analysis of resized images. In: ACM SIGMM Multimedia & Security Workshop, pp. 13–18, September 2010Google Scholar
  20. 20.
    O’Brien, J.F., Farid, H.: Exposing photo manipulation with inconsistent reflections. ACM Trans. Graph. 31(1), 1–11 (2012)CrossRefGoogle Scholar
  21. 21.
    Peng, B., Wang, W., Dong, J., Tan, T.: Automatic detection of 3-D lighting inconsistencies via a facial landmark based morphable model. In: IEEE International Conference on Image Processing, pp. 3932–3936 (2016)Google Scholar
  22. 22.
    Peng, B., Wang, W., Dong, J., Tan, T.: Optimized 3D lighting environment estimation for image forgery detection. IEEE Trans. Inf. Forensics Secur. 12(2), 479–494 (2017)CrossRefGoogle Scholar
  23. 23.
    Popescu, A.C., Farid, H.: Exposing digital forgeries by detecting traces of resampling. Signal Process. 53(2), 758–767 (2005)MathSciNetGoogle Scholar
  24. 24.
    Redi, J., Taktak, W., Dugelay, J.-L.: Digital image forensics: a booklet for beginners. Multimed. Tools Appl. 51(1), 133–162 (2011)CrossRefGoogle Scholar
  25. 25.
    Riess, C., Angelopoulou, E.: Scene illumination as an indicator of image manipulation. In: Böhme, R., Fong, P.W.L., Safavi-Naini, R. (eds.) IH 2010. LNCS, vol. 6387, pp. 66–80. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-16435-4_6 CrossRefGoogle Scholar
  26. 26.
    Riess, C., Unberath, M., Naderi, F., Pfaller, S., Stamminger, M., Angelopoulou, E.: Handling multiple materials for exposure of digital forgeries using 2-D lighting environments. Multimed. Tools Appl. 76(4), 4747–4764 (2016)CrossRefGoogle Scholar
  27. 27.
    Sencar, H.T., Memon, N. (eds.): Digital Image Forensics: There is More to a Picture than Meets the Eye. Springer, New York (2013). doi: 10.1007/978-1-4614-0757-7 Google Scholar
  28. 28.
    Shafer, S.A.: Using color to separate reflection components. J. Color Res. Appl. 10(4), 210–218 (1985)CrossRefGoogle Scholar
  29. 29.
    Tan, R., Nishino, K., Ikeuchi, K.: Color constancy through inverse-intensity chromaticity space. J. Optical Soc. Am. A 21(3), 321–334 (2004)CrossRefGoogle Scholar
  30. 30.
    Wu, X., Fang, Z.: Image splicing detection using illuminant color inconsistency. In: Proceedings of the 3rd IEEE International Conference on Multimedia Information Networking and Security (MINES 2011), Shanghai, China, pp. 600–603, November 2011Google Scholar
  31. 31.
    Yu, H., Ng, T.-T., Sun, Q.: Recaptured photo detection using specularity distribution. In: Proceedings of the 15th IEEE International Conference on Image Processing (ICIP 2008), San Diego, CA, USA, pp. 3140–3143, October 2008Google Scholar
  32. 32.
    Zhang, W., Cao, X., Zhang, J., Zhu, J., Wang, P.: Detecting photographic composites using shadows. In: Proceedings of the IEEE International Conference on Multimedia and Expo (ICME 2009), Cancun, Mexico, pp. 1042–1045, June 2009Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.IT Security LabUniversity of Erlangen-NurembergErlangenGermany

Personalised recommendations