Advertisement

Understanding Decision Support in Large-Scale Disasters: Challenges in Humanitarian Logistics Distribution

  • Mohammad Tafiqur Rahman
  • Tina Comes
  • Tim A. Majchrzak
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 301)

Abstract

Disasters are characterized by conflicting, uncertain, or lacking data. Nevertheless, humanitarian responders need to make rapid decisions. This is particularly true for the immediate response to a sudden onset disaster. Since most humanitarian decision support systems (DSS) make important assumptions on data availability and quality that are often not fulfilled in practice, decision-makers are largely left to their experience. In this paper, we identify three major challenges for an operational DSS to support distribution planning: (i) deep uncertainty; (ii) reflecting field conditions and constraints; and (iii) rapid humanitarian logistics modeling. We review the relevant theories and provide an outline of the system requirements to develop a system for operational responders to achieve targeted service level on distribution of disaster relief through proper utilization of resources, time and scheduling.

Keywords

Decision support systems Deep uncertainty Disaster response Rapid decision-making Humanitarian logistics distribution 

References

  1. 1.
    Altay, N., Labonte, M.: Challenges in humanitarian information management and exchange: evidence from Haiti. Disasters 38(s1), 50–72 (2014)CrossRefGoogle Scholar
  2. 2.
    Anaya-Arenas, A.M., Renaud, J., Ruiz, A.: Relief distribution networks: a systematic review. Ann. Oper. Res. 223(1), 53–79 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ansell, C., Boin, A., Keller, A.: Managing transboundary crises: identifying the building blocks of an effective response system. JCCM 18(4), 195–207 (2010)Google Scholar
  4. 4.
    Arnott, D., Pervan, G.: Eight key issues for the decision support systems discipline. Decis. Supp. Syst. 44(3), 657–672 (2008)CrossRefGoogle Scholar
  5. 5.
    Balcik, B., Beamon, B.M., Smilowitz, K.: Last mile distribution in humanitarian relief. J. Intell. Transp. Syst. 12(2), 51–63 (2008)CrossRefGoogle Scholar
  6. 6.
    Beamon, B.M., Balcik, B.: Performance measurement in humanitarian relief chains. Int. J. Publ. Sector Manage. 21(1), 4–25 (2008)CrossRefGoogle Scholar
  7. 7.
    Benini, A.A.: Uncertainty and information flows in humanitarian agencies. Disasters 21(4), 335–353 (1997)CrossRefGoogle Scholar
  8. 8.
    Bhimani, S., Song, J.S.: Gaps between research and practice in humanitarian logistics. J. Appl. Bus. Econ. 18(1), 11–24 (2016)Google Scholar
  9. 9.
    Caracelli, V.J., Greene, J.C.: Data analysis strategies for mixed-method evaluation deigns. Educ. Eval. Policy Anal. 15(2), 195–207 (1993)CrossRefGoogle Scholar
  10. 10.
    Chan, J., Comes, T.: Innovative research design-a journey into the information typhoon. Procedia Eng. 78, 52–58 (2014)CrossRefGoogle Scholar
  11. 11.
    Carver, L., Turoff, M.: Human-computer interaction: the human and computer as a team in emergency management information systems. Commun. ACM 50(3), 33–38 (2007)CrossRefGoogle Scholar
  12. 12.
    Caunhye, A.M., Nie, X., Pokharel, S.: Optimization models in emergency logistics: a literature review. Socio Econ. Plan. Sci. 46(1), 4–13 (2012)CrossRefGoogle Scholar
  13. 13.
    Comes, T., Van De Walle, B.: Information systems for humanitarian logistics: concepts and design principles. In: Haavisto, I., Spens, K., Kovcs, G. (eds.) Supply Chain Management for Humanitarians, pp. 257–284. Kogan Page, London (2016)Google Scholar
  14. 14.
    Comes, T., Hiete, M., Schultmann, F.: A decision support system for multi-criteria decision problems under severe uncertainty. J. Multi Criteria Decis. Anal. 20, 28–49 (2013)CrossRefGoogle Scholar
  15. 15.
    Comes, T., Hiete, M., Wijngaards, N., Schultmann, F.: Decision maps: a framework for multi-criteria decision support under severe uncertainty. Decis. Supp. Syst. 52(1), 108–118 (2011)CrossRefGoogle Scholar
  16. 16.
    Comes, T., Wijngaards, N., Van de Walle, B.: Exploring the future: runtime scenario selection for complex and time-bound decisions. Technol. Forecast. Soc. Change 97, 29–46 (2015)CrossRefGoogle Scholar
  17. 17.
    Comfort, L.K., Sungu, Y., Johnson, D., Dunn, M.: Complex systems in crisis: anticipation and resilience in dynamic environments. JCCM 9(3), 144–158 (2001)Google Scholar
  18. 18.
    Cozzolino, A.: Humanitarian logistics and supply chain management. In: Cozzolino, A. (ed.) Humanitarian Logistics, pp. 5–16. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Creswell, J.W., Fetters, M.D., Ivankova, N.V.: Designing a mixed methods study in primary care. Ann. Family Med. 2(1), 7–12 (2004)CrossRefGoogle Scholar
  20. 20.
    Fritz Institute, Logistics and the Effective Delivery of Humanitarian Relief. http://www.fritzinstitute.org/PDFs/Programs/tsunamiLogistics0605.pdf. Accessed 10 Aug 2016
  21. 21.
    Hamarat, C., Kwakkel, J.H., Pruyt, E.: Adaptive robust design under deep uncertainty. Technol. Forecast. Soc. Change 80, 408–418 (2013)CrossRefGoogle Scholar
  22. 22.
    Hanson, W.E., Creswell, J.W., Clark, V.L.P., Petska, K.S., Creswell, J.D.: Mixed methods research designs in counseling psychology. J. Counsel. Psychol. 52(2), 224 (2005)CrossRefGoogle Scholar
  23. 23.
    Hellingrath, B., Widera, A.: Survey on major challenges in humanitarian logistics. In: Proceedings of the 8th International ISCRAM Conference, pp. 1–5 (2011)Google Scholar
  24. 24.
    Holguín-Veras, J., Pérez, N., Jaller, M., Van Wassenhove, L.N., Aros-Vera, F.: On the appropriate objective function for post-disaster humanitarian logistics models. J. Oper. Manage. 31(5), 262–280 (2013)CrossRefGoogle Scholar
  25. 25.
    Holguín-Veras, J., Jaller, M., Van Wassenhove, L.N., Pérez, N., Wachtendorf, T.: On the unique features of post-disaster humanitarian logistics. J. Oper. Manage. 30(7), 494–506 (2012)CrossRefGoogle Scholar
  26. 26.
    Klibi, W., Martel, A., Guitouni, A.: The design of robust value-creating supply chain networks: a criti-cal review. Eur. J. Oper. Res. 203(2), 283–293 (2010)CrossRefzbMATHGoogle Scholar
  27. 27.
    Kovács, G., Spens, K.: Identifying challenges in humanitarian logistics. IJPDLM 39(6), 506–528 (2009)Google Scholar
  28. 28.
    Kovács, G., Spens, K.M.: Humanitarian logistics in disaster relief operations. IJPDLM 37(2), 99–114 (2007)Google Scholar
  29. 29.
    Kunz, N., Reiner, G.: A meta-analysis of humanitarian logistics research. J. Humanit. Logist. Supply Chain Manage. 2(2), 116–147 (2012)CrossRefGoogle Scholar
  30. 30.
    Lee, Y.M., Ghosh, S., Ettl, M.: Simulating distribution of emergency relief supplies for disaster response operations. In: Winter Simulation Conference, pp. 2797–2808 (2009)Google Scholar
  31. 31.
    Lempert, R.J., Groves, D.G., Popper, S.W., Bankes, S.C.: A general, analytic method for generating robust strategies and narrative scenarios. Manage. Sci. 52(4), 514–528 (2006)CrossRefGoogle Scholar
  32. 32.
    Liberatore, F., Pizarro, C., de Blas, C.S., Ortuño, M.T., Vitoriano B.: Uncertainty in humanitarian logistics for disaster management: a review. In: Vitoriano, B., Montero, J., Ruan, D. (eds) Decision Aid Models for Disaster Management and Emergencies. Atlantis Computational Intelligence Systems, vol. 7. Atlantis Press, Paris (2013)Google Scholar
  33. 33.
    Luis, E., Dolinskaya, I.S., Smilowitz, K.R.: Disaster relief routing: integrating research and practice. Socio Econ. Plan. Sci. 46(1), 88–97 (2012)CrossRefGoogle Scholar
  34. 34.
    Maon, F., Lindgreen, A., Vanhamme, J.: Supply Chains in Disaster Relief Operations: Cross-sector Socially Oriented Collaborations. Hull University Business School (2009)Google Scholar
  35. 35.
    Markus, M.L., Majchrzak, A., Gasser, L.: A design theory for systems that support emergent knowledge processes. MIS Q. 26, 179–212 (2002)Google Scholar
  36. 36.
    Nolz, P.C., Semet, F., Doerner, K.F.: Risk approaches for delivering disaster relief supplies. OR Spectrum 33(3), 543–569 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Nolz, P.C., Doerner, K.F., Hartl, R.F.: Water distribution in disaster relief. IJPDLM 40(8/9), 693–708 (2010)Google Scholar
  38. 38.
    Oloruntoba, R.: A wave of destruction and the waves of relief: issues, challenges and strategies. Disaster Prevention Manage. 14(4), 506–521 (2005)CrossRefGoogle Scholar
  39. 39.
    Ortuño, M.T., Cristóbal, P., Ferrer, J.M., Martín-Campo, F.J., Muoz, S., Tirado, G., Vitoriano, B.: Decision aid models and systems for humanitarian logistics: a survey. In: Vitoriano, B., Montero, J., Ruan, D. (eds.) Decision Aid Models for Disaster Management and Emergencies. Atlantis Computational Intelligence Systems, vol. 7. Atlantis Press, Paris (2013)Google Scholar
  40. 40.
    Pawlak, Z.: Rough set approach to knowledge-based decision support. Eur. J. Oper. Res. 99(1), 48–57 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Pitz, G.F.: Human engineering of decision aids. Adv. Psychol. 14, 205–221 (1983)CrossRefGoogle Scholar
  42. 42.
    Pruyt, E., Kwakkel, J.H.: Radicalization under deep uncertainty: a multi-model exploration of activism, extremism, and terrorism. Syst. Dyn. Rev. 30, 1–28 (2014)CrossRefGoogle Scholar
  43. 43.
    Salvadó, L.L., Lauras, M., Comes, T., Van de Walle, B.: Towards more relevant research on Humanitarian disaster management coordination. In: Proceedings of 12th ISCRAM (2015)Google Scholar
  44. 44.
    Shaluf, I.M., Ahmadun, F.R., Mustapha, S.A.: Technological disaster’s criteria and models. Disaster Prevention Manage. 12(4), 305–311 (2003)CrossRefGoogle Scholar
  45. 45.
    Shim, J.P., Warkentin, M., Courtney, J.F., Power, D.J., Sharda, R., Carlsson, C.: Past, present, and future of decision support technology. Decis. Support Syst. 33(2), 111–126 (2002)CrossRefGoogle Scholar
  46. 46.
    Stabell, C.B.: Decision support systems: alternative perspectives and schools. Decis. Support Syst. 3(3), 243–251 (1987)CrossRefGoogle Scholar
  47. 47.
    Soden, R., Budhathoki, N., Palen, L.: Resilience-building and the crisis informatics agenda: lessons learned from open cities Kathmandu. In: Proceedings of 11th ISCRAM, University Park, Pennsylvania, USA, pp. 1–10 (2014)Google Scholar
  48. 48.
    Ter Mors, A., Valk, J., Witteveen, C.: An event-based task framework for disaster planning and decision support. In: 2nd ISCRAM, Brussels, Belgium (2005)Google Scholar
  49. 49.
    Thompson, S., Altay, N., Green, W.G., Lapetina, J.: Improving disaster response efforts with decision support systems. Int. J. Emerg. Manage. 3(4), 250–263 (2006)CrossRefGoogle Scholar
  50. 50.
    Tofighi, S., Torabi, S.A., Mansouri, S.A.: Humanitarian logistics network design under mixed uncertainty. Eur. J. Oper. Res. 250(1), 239–250 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Turoff, M., Chumer, M., Van de Walle, B., Yao, X.: The design of a dynamic emergency response management information system (DERMIS). JITTA J. Inf. Technol. Theory Appl. 5(4), 1 (2004)Google Scholar
  52. 52.
    Tzeng, G.H., Cheng, H.J., Huang, T.D.: Multi-objective optimal planning for designing relief delivery systems. Transp. Res. Part E Logist. Transp. Rev. 43(6), 673–686 (2007)CrossRefGoogle Scholar
  53. 53.
    Walker, W.E., Lempert, R.J., Kwakkel, J.H.: Deep uncertainty. In: Gass, S.I., Fu, M.C. (eds.) Encyclopedia of Operations Research and Management Science, pp. 395–402. Springer, New York (2013)CrossRefGoogle Scholar
  54. 54.
    Wallace, W.A., De Balogh, F.: Decision support systems for disaster management. Publ. Admin. Rev. 45, 134–146 (1985)CrossRefGoogle Scholar
  55. 55.
    Walls, J.G., Widmeyer, G.R., El Sawy, O.A.: Assessing information system design theory in perspective: how useful was our 1992 initial rendition? JITTA J. Inf. Technol. Theory Appl. 6(2), 43 (2004)Google Scholar
  56. 56.
    Walls, J.G., Widmeyer, G.R., El Sawy, O.A.: Building an information system design theory for vigilant EIS. Inf. Syst. Res. 3(1), 36–59 (1992)CrossRefGoogle Scholar
  57. 57.
    Widera, A., Dietrich, H.A., Hellingrath, B., Becker, J.: Understanding humanitarian supply chains developing an integrated process analysis toolkit. In: Proceedings of the 10th International ISCRAM Conference, Germany (2013)Google Scholar
  58. 58.
    Van Wassenhove, L.N.: Humanitarian aid logistics: supply chain management in high gear. J. Oper. Res. Soc. 57(5), 475–489 (2006)CrossRefzbMATHGoogle Scholar
  59. 59.
    Van Wassenhove, L.N., Pedraza Martinez, A.J.: Using OR to adapt supply chain management best practices to humanitarian logistics. Int. Trans. Oper. Res. 19(1–2), 307–322 (2012)CrossRefGoogle Scholar
  60. 60.
    Venkatesh, V., Brown, S.A., Bala, H.: Bridging the qualitative-quantitative divide: guidelines for conducting mixed methods research in information systems. MIS Q. 37(1), 21–54 (2013)Google Scholar
  61. 61.
    Van de Walle, B., Turoff, M.: Decision support for emergency situations. IseB 6(3), 295–316 (2008)CrossRefGoogle Scholar
  62. 62.
    Yates, D., Paquette, S.: Emergency knowledge management and social media technologies: a case study of the 2010 Haitian earthquake. Int. J. Inf. Manage. 31(1), 6–13 (2011)CrossRefGoogle Scholar
  63. 63.
    Zhang, D., Zhou, L., Nunamaker, J.F.: A knowledge management framework for the support of decision making in humanitarian assistance/disaster relief. Knowl. Inf. Syst. 4(3), 370–385 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mohammad Tafiqur Rahman
    • 1
  • Tina Comes
    • 2
  • Tim A. Majchrzak
    • 1
  1. 1.University of AgderKristiansandNorway
  2. 2.Delft University of TechnologyDelftNetherlands

Personalised recommendations