Reconfigurable Silicon Photonic Interconnect for Many-Core Architecture

  • Hang GuanEmail author
  • Sébastien Rumley
  • Ke Wen
  • David Donofrio
  • John Shalf
  • Keren Bergman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10524)


In the context of declining Moore and Dennard Laws, efficient utilization of chip area and transistor is more than ever required. The portion of transistors devoted to compute operations can be maximized by off-loading as much as possible data-storage onto memory chips. This, however, requires wide off-chip IO bandwidth, and furthermore increases Network-on-chip (NoC) traffic. In this paper, we first present a concept of optically connected memory modules, delivering enough bandwidth to allow for cache reduction and memory externalization. Second, we show that connecting these memory modules in a reconfigurable interconnect permit to substantially offload NoC traffic.


Silicon photonic Multiprocessor interconnection 



This work was supported by the ASCR Office in the DOE Office of Science under contract number DE-AC02-05CH11231, and the DARPA Microsystems Technology Office (MTO) under the PERFECT (Power Efficiency Revolution for Embedded Computing Technologies) program.


  1. 1.
    Wen, K., Rumley, S., Samadi, P., Chen, C.P., Bergman, K.: Silicon photonics in post Moore’s Law era: technological and architectural implications. In: Post-Moore’s Era Supercomputing (PMES) Workshop, Salt Lake City. IEEE (2016)Google Scholar
  2. 2.
    Beamer, S., Sun, C., Kwon, Y.J., Joshi, A., Batten, C., Stojanović, V., Asanović, K.: Re-architecting DRAM memory systems with monolithically integrated silicon photonics. ACM SIGARCH Comput. Architect. News 38(3), 129–140 (2010)CrossRefGoogle Scholar
  3. 3.
    Loh, G.H.: 3D-stacked memory architectures for multi-core processors. In: 35th International Symposium on Computer Architecture (ISCA), pp. 453–464. IEEE (2008)Google Scholar
  4. 4.
    Sun, C., Wade, M.T., Lee, Y., Orcutt, J.S., Alloatti, L., Georgas, M.S., Waterman, A.S., Shainline, J.M., Avizienis, R.R., Lin, S., Moss, B.R.: Single-chip microprocessor that communicates directly using light. Nature 528(7583), 534–538 (2015)CrossRefGoogle Scholar
  5. 5.
    Wen, K., Guan, H., Calhoun, D.M., Donofrio, D., Shalf, J., Bergman, K.: Silicon photonic memory interconnect for many-core architectures. In: High Performance Extreme Computing Conference (HPEC), Waltham, pp. 1–7. IEEE, September 2016Google Scholar
  6. 6.
    Sun, C., Georgas, M., Orcutt, J., Moss, B., Chen, Y.H., Shainline, J., Wade, M., Mehta, K., Nammari, K., Timurdogan, E., Miller, D.: A monolithically-integrated chip-to-chip optical link in bulk CMOS. IEEE J. Solid-State Circ. 50(4), 828–844 (2015)CrossRefGoogle Scholar
  7. 7.
    Arakawa, Y., Nakamura, T., Urino, Y., Fujita, T.: Silicon photonics for next generation system integration platform. IEEE Commun. Mag. 51(3), 72–77 (2013)CrossRefGoogle Scholar
  8. 8.
    Kopp, C., Bernabe, S., Bakir, B.B., Fedeli, J.M., Orobtchouk, R., Schrank, F., Porte, H., Zimmermann, L., Tekin, T.: Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging. IEEE J. Sel. Top. Quantum Electron. 17(3), 498–509 (2011)CrossRefGoogle Scholar
  9. 9.
    Orcutt, J.S., Ram, R.J., Stojanović, V.: Integration of Silicon Photonics into Electronic Processes, p. 86290F. Society of Photo-Optical Instrumentation Engineers (SPIE) (2013)Google Scholar
  10. 10.
    Luo, X., Cheng, Y., Song, J., Liow, T.Y., Wang, Q.J., Yu, M.: Wafer-scale dies-transfer bonding technology for hybrid III/V-on-Silicon photonic integrated circuit application. IEEE J. Sel. Top. Quantum Electron. 22(6), 443–454 (2016)CrossRefGoogle Scholar
  11. 11.
    Bahadori, M., Rumley, S., Polster, R., Gazman, A., Traverso, M., Webster, M., Patel, K., Bergman, K.: Energy-performance optimized design of silicon photonic interconnection networks for high-performance computing. In: Design, Automation & Test in Europe Conference & Exhibition (DATE), Lausanne, pp. 326–331. IEEE (2017)Google Scholar
  12. 12.
    Bahadori, M., Rumley, S., Nikolova, D., Bergman, K.: Comprehensive design space exploration of silicon photonic interconnects. J. Lightwave Technol. 34(12), 2975–2987 (2016)CrossRefGoogle Scholar
  13. 13.
    Minkenberg, C., Rodriguez, G., Prisacari, B., Schares, L., Heidelberger, P., Chen, D., Stunkel, C.: Large-scale system partitioning using OCS. In: Photonics in Switching (PS), Florence. IEEE (2015)Google Scholar
  14. 14.
    Wen, K., Samadi, P., Rumley, S., Chen, C.P., Shen, Y., Bahadori, M., Wilke, J., Begman, K.: Flexfly: enabling a reconfigurable dragonfly through silicon photonics. In: International Conference for High Performance Computing, Networking, Storage and Analysis (SC), Salt Lake City. IEEE (2016)Google Scholar
  15. 15.
    Sodani, A., Gramunt, R., Corbal, J., Kim, H.S., Vinod, K., Chinthamani, S., Hutsell, S., Agarwal, R., Liu, Y.C.: Knights landing: second-generation intel xeon phi product. IEEE Micro 36(2), 34–46 (2016)CrossRefGoogle Scholar
  16. 16.
    Rodrigues, A.F., Hemmert, K.S., Barrett, B.W., Kersey, C., Oldfield, R., Weston, M., Risen, R., Cook, J., Rosenfeld, P., CooperBalls, E., Jacob, B.: The structural simulation toolkit. ACM SIGMETRICS Perform. Eval. Rev. 38(4), 37–42 (2011)CrossRefGoogle Scholar
  17. 17.
    Voskuilen, G.R., Frank, M.P., Hammond, S.D., Rodrigues, A.F.: Evaluating the Opportunities for Multi-Level Memory–An ASC 2016 L2 Milestone. Sandia Report (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Hang Guan
    • 1
    Email author
  • Sébastien Rumley
    • 1
  • Ke Wen
    • 1
  • David Donofrio
    • 2
  • John Shalf
    • 2
  • Keren Bergman
    • 1
  1. 1.Department of Electrical EngineeringColumbia UniversityNew YorkUSA
  2. 2.Lawrence Berkeley LabBerkeleyUSA

Personalised recommendations