Plasma Application for Hygienic Purposes in Medicine, Industry, and Biotechnology: Update 2017

  • Axel KramerEmail author
  • Frieder Schauer
  • Roald Papke
  • Sander Bekeschus


Cold atmospheric plasma (CAP) operates at temperatures between 36 and 52°C. It is a highly efficient tool in a number of hygiene and biomedical applications. CAP is effective against microorganisms and viruses. Development of microbial resistance has not been observed yet and is not expected. As opposed to some chemical disinfectants and sterilization processes, cold plasmas are suitable for treatment of temperature-sensitive materials without leaving toxic residues. CAP has been used in combination with hydrogen peroxide vapor for sterilization in health care services and industry since 1993. New developments for sterilization are emerging with peracetic acid, N2 or Ar-N2 plasma, microwave-excited plasma, and steam plasma-flow autoclave techniques. Technical solutions for disinfection of medical devices are still being developed.

CAP is promising in surgery, especially for pre-operative skin and wound antisepsis. It surpasses chemical antiseptics in terms of the ability to penetrate the excretory ducts of sebaceous glands and hair follicles. In implantology, CAP alters the surface of alloplastic implants, giving the body’s cells a growth advantage over bacterial colonization.

The food industry uses CAP to decontaminate raw produce, spices, and food, as well as surfaces and packaging used in food production, and to inactivate allergens and toxins. CAP stimulates the growth of cells and tissue, which not only increases the yield of crop plants, but also their nutritional value.

Contaminated water of all kinds can be decontaminated and chemically degraded using CAP to produce antimicrobial agents (so-called plasma pharmacy). Soil bioremediation and fertility are improved after CAP treatment. CAP-induced changes in microbial metabolism can be used for biological degradation processes.

In air purification, CAP inactivates noxae as well as odors, allergens, and microorganisms.


Air purification Antisepsis Decontamination Plasma pharmacy Sterilization Surface functionalization Water and wastewater treatment 


  1. 1.
    Kramer A, Bekeschus S, Matthes R, Bender C, Stope MB, Napp M, Lademann O, Lademann J, Weltmann KD, Schauer F. Cold physical plasmas in the field of hygiene—relevance, significance, and future applications. Plasma Process Polym. 2015;12:1410–22.CrossRefGoogle Scholar
  2. 2.
    Kramer A, Matthes R, Bekeschus S, Bender C, Napp M, Lademann O, Weltmann KD. Aktueller und perspektivischer Einsatz kalter Plasmen aus hygienischer Sicht. In: Metelmann HR, von Woedtke T, Weltmann KD, editors. Plasmamedizin—Kaltplasma in der medizinischen Anwendung. Berlin: Springer; 2016. p. 137–55.Google Scholar
  3. 3.
    Daeschlein G, Napp M, Lutze S, Arnold A, von Podewils S, Gümbel D, Jünger M. Skin and wound decontamination of multidrug-resistant bacteria by cold atmospheric plasma coagulation. J Dtsch Dermatol Ges. 2015;13:143–50.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Daeschlein G, Napp M, Majumdar A, Richter E, Rüsch-Gerdes S, Aly F, von Podewils S, Sicher C, Haase H, Niggemeier M, Weltmann KD, Jünger M. In vitro killing of mycobacteria by low temperature atmospheric pressure plasma and dielectric barrier discharge plasma for treatment of tuberculosis. Clin Plasma Med. 2017;5-6:1–7.CrossRefGoogle Scholar
  5. 5.
    Daeschlein G, Scholz S, Arnold A, von Podewils S, Haase H, Emmert S, von Woedtke T, Weltmann KD, Jünger M. In vitro susceptibility of multidrug resistant skin and wound pathogens against low temperature atmospheric pressure plasma jet (APPJ) and dielectric barrier discharge plasma (DBD). Plasma Proc Polym. 2014;11:175–83.CrossRefGoogle Scholar
  6. 6.
    Daeschlein G, von Woedtke T, Kindel E, Brandenburg R, Weltmann KD, Jünger M. Antibacterial activity of an atmospheric pressure plasma jet against relevant wound pathogens in-vitro on a simulated wound environment. Plasma Process Polym. 2010;7(3–4):224–30.CrossRefGoogle Scholar
  7. 7.
    Kulaga EM, Jacofsky DJ, McDonnell C, Jacofsky MC. The use of an atmospheric pressure plasma jet to inhibit common wound-related pathogenic strains of bacteria. Plasma Med. 2016;6(1):1–12.CrossRefGoogle Scholar
  8. 8.
    Lührmann A, Matthes R, Kramer A. Impact of cold atmospheric pressure argon plasma on antibiotic sensitivity of methicillin-resistant Staphylococcus aureus strains in vitro. GMS Hyg Inf Contr. 2016;11:Doc17.Google Scholar
  9. 9.
    Maisch T, Shimizu T, Isbary G, Heinlin J, Karrer S, Klämpfl TG, Li YF, Morfill G, Zimmermann JL. Contact-free inactivation of Candida albicans biofilms by cold atmospheric air plasma. Appl Environ Microbiol. 2012;78(12):4242–7.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Matthes R, Lührman A, Holtfreter S, Kolata J, Radke D, Hübner NO, Assadian O, Kramer A. Antibacterial activity of cold atmospheric pressure argon plasma against 78 genetically different (mecA, luk-P, agr or capsular polysaccharide type) Staphylococcus aureus strains. Skin Pharmacol Physiol. 2016;29(2):83–91.PubMedCrossRefGoogle Scholar
  11. 11.
    Misra NN, Tiwari BK, Raghavarao KSMS, Cullen PJ. Nonthermal plasma inactivation of food-borne pathogens. Food Eng Rev. 2011;3(3–4):159–70.CrossRefGoogle Scholar
  12. 12.
    Napp M, Daeschlein G, von Podewils S, Hinz P, Emmert S, Haase H, Spitzmueller R, Gümbel D, Kasch R, Jünger M. In vitro susceptibility of methicillin-resistant and methicillin-susceptible strains of Staphylococcus aureus to two different cold atmospheric plasma sources. Infection. 2016;44(4):531–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Vukušić T, Stulić V, Jambrak AR, Milošević S, Stanzer D, Herceg Z. Effect of treatment by non-thermal plasma jet on the growth of various food spoilage bacteria in superfluous. Croat J Food Sci Technol. 2016;8(1):20–9.CrossRefGoogle Scholar
  14. 14.
    Ke Z, Thopan P, Fridman G, Miller V, Yu L, Fridman A, Huang Q. Effect of N2/O2 composition on inactivation efficiency of Escherichia coli by discharge plasma at the gas-solution interface. Clin Plasma Med. 2017;7-8:1–8.CrossRefGoogle Scholar
  15. 15.
    Claro T, Cahill OJ, O’Connor N, Daniels S, Humphreys H. Cold-air atmospheric plasma against Clostridium difficile spores: a potential alternative for the decontamination of hospital inanimate surfaces. Infect Control Hosp Epidemiol. 2015;36:742–4.PubMedCrossRefGoogle Scholar
  16. 16.
    Connor M, Flynn PB, Fairley DJ, Marks N, Manesiotis P, Graham WG, Gilmore BF, McGrath JW. Evolutionary clade affects resistance of Clostridium difficile spores to cold atmospheric plasma. Sci Rep. 2017;7:41814.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Doona CJ, Feeherry FE, Kustin K, Olinger GG, Setlow P, Malkin AJ, Leighton T. Fighting Ebola with novel spore decontaminating technologies for the military. Front Microbiol. 2015;6:663.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Hertwig C, Steins V, Reineke K, Rademacher A, Klocke M, Rauh C, Schlueter O. Impact of surface structure and feed gas composition on Bacillus subtilis endospore inactivation during direct plasma treatment. Front Microbiol. 2015;6:774.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Raguse M, Fiebrandt M, Stapelmann K, Madela K, Laue M, Lackmann JW, Thwaite JE, Setlow P, Awakowicz P, Moeller R. Improvement of biological indicators by uniformly distributing Bacillus subtilis spores in monolayers to evaluate enhanced spore decontamination technologies. Appl Environ Microbiol. 2016;8:2031–8.CrossRefGoogle Scholar
  20. 20.
    Wang SW, Doona CJ, Setlow P, Li YQ. Use of Raman spectroscopy and phase-contrast microscopy to characterize cold atmospheric plasma inactivation of individual bacterial spores. Appl Environ Microbiol. 2016;82:5775–84.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Klämpfl TG, Isbary G, Shimizu T, Li YF, Zimmermann JL, Stolz W, Schlegel J, Morfill GE, Schmidt HU. Cold atmospheric air plasma sterilization against spores and other microorganisms of clinical interest. Appl Environ Microbiol. 2012;78(15):5077–82.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Daeschlein G, Scholz S, von Woedtke T, Niggemeier M, Kindel E, Brandenburg R, Weltmann KD, Jünger M. In-vitro killing of clinical fungal strains by low temperature atmospheric pressure plasma (APPJ). IEEE Trans Plasma Sci. 2011;39(11):815–21.CrossRefGoogle Scholar
  23. 23.
    Heinlin J, Maisch T, Zimmermann JL, Shimizu T, Holzmann T, Simon M, Heider J, Landthaler M, Morfill G, Karrer S. Contact-free inactivation of Trichophyton rubrum and Microsporum canis by cold atmospheric plasma treatment. Fut Microbiol. 2013;8(9):1097–106.CrossRefGoogle Scholar
  24. 24.
    Itooka K, Takahashi K, Izawa S. Fluorescence microscopic analysis of antifungal effects of cold atmospheric pressure plasma in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2016;100:9295–304.PubMedCrossRefGoogle Scholar
  25. 25.
    Jambrak AR, Vukusic T, Stulic V, Mrvcic J, Milosevic S, Simunek M, Herceg Z. The effect of high power ultrasound and cold gas-phase plasma treatments on selected yeast in pure culture. Food Bioproc Technol. 2015;8:791–800.CrossRefGoogle Scholar
  26. 26.
    Park SY, Ha SD. Application of cold oxygen plasma for the reduction of Cladosporium cladosporioides and Penicillium citrinum on the surface of dried filefish (Stephanolepis cirrhifer) fillets. Int J Food Sci Technol. 2015;50:966–73.CrossRefGoogle Scholar
  27. 27.
    Brelles-Mariño G. Challenges in biofilm inactivation: the use of cold plasma as a new approach. J Bioproc Biotech. 2012;2:e107.Google Scholar
  28. 28.
    Delben JA, Zago CE, Tyhovych N, Duarte S, Vergani CE. Effect of atmospheric-pressure cold plasma on pathogenic oral biofilms and in vitro reconstituted oral epithelium. PLoS One. 2016;11:e0155427.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Ermolaeva SA, Varfolomeev AF, Chernukha MY, Yurov DS, Vasiliev MM, Kaminskaya AA, Moisenovich MM, Romanova JM, Murashev AN, Selezneva II, Shimizu T, Sysolyatina EV, Shaginyan IA, Petrov OF, Mayevsky EI, Fortov VE, Morfill GE, Naroditsky BS, Gintsburg AL. Bactericidal effects of non-thermal argon plasma in vitro, in biofilms and in the animal model of infected wounds. J Med Microbiol. 2011;60(Pt 1):75–83.CrossRefPubMedGoogle Scholar
  30. 30.
    Flynn PB, Busetti A, Wielogorska E, Chevallier OP, Elliott CT, Laverty G, Gorman SP, Graham WG, Gilmore BF. Non-thermal plasma exposure rapidly attenuates bacterial AHL-dependent quorum sensing and virulence. Sci Rep. 2016;6:26320.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Matthes R, Jablonowski L, Koban I, Quade A, Huebner NO, Schlueter R, Weltmann KD, von Woedtke T, Kramer A, Kocher T. In vitro treatment of Candida albicans biofilms on denture base material with volume dielectric barrier discharge plasma (VDBD) compared with common chemical antiseptics. Clin Oral Investig. 2015;19:2319–26.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Matthes R, Koban I, Bender C, Masur K, Kindel E, Weltmann KD, Kocher T, Kramer A, Hübner NO. Antimicrobial efficacy of an atmospheric pressure plasma jet against biofilms of pseudomonas aeruginosa and staphylococcus epidermidis. Plasma Process Polym. 2012;10(2):161–6.CrossRefGoogle Scholar
  33. 33.
    Modic M, McLeod NP, Sutton JM, Walsh JL. Cold atmospheric pressure plasma elimination of clinically important single- and mixed-species biofilms. Int J Antimicrob Agents. 2017;49(3):375–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Rupf S, Idlibi AN, Umanskaya N, Hannig M, Nothdurft F, Lehmann A, Schindler A, von Müller L, Spitzer W. Disinfection and removal of biofilms on microstructured titanium by cold atmospheric plasma. J Dent Implant. 2012;28(2):126–37.Google Scholar
  35. 35.
    Ziuzina D, Boehm D, Patil S, Cullen PJ, Bourke P. Cold plasma inactivation of bacterial biofilms and reduction of quorum sensing regulated virulence factors. PLoS One. 2015;10(9):e0138209.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Ziuzina D, Han L, Cullen PJ, Bourke P. Cold plasma inactivation of internalised bacteria and biofilms for Salmonella enterica serovar typhimurium, Listeria monocytogenes and Escherichia coli. Int J Food Microbiol. 2015;210:53–61.PubMedCrossRefGoogle Scholar
  37. 37.
    Borges AC, Nishime TMC, Kostov KG, Lima GMG, Gontijo AVL, Carvalho de JNMM, Honda RY, Koga-Ito CY. Cold atmospheric pressure plasma jet modulates Candida albicans virulence traits. Clin Plasma Med. 2017;7-8:9–15.CrossRefGoogle Scholar
  38. 38.
    Patange A, Boehm D, Bueno-Ferrer C, Cullen PJ, Bourke P. Controlling Brochothrix thermosphacta as a spoilage risk using in-package atmospheric cold plasma. Food Microbiol. 2017;66:48–54.PubMedCrossRefGoogle Scholar
  39. 39.
    Pandit S, Mokkapati VRSS, Helgadóttir SH, Westerlundan F, Mijakovic I. Combination of cold atmospheric plasma and vitamin C effectively disrupts bacterial biofilms. Clin Microbiol. 2017;6(283).Google Scholar
  40. 40.
    Pradeep P, Chulkyoon M. Non-thermal plasmas (NTPs) for inactivation of viruses in abiotic environment. Res J Biotechnol. 2016;11:91–6.CrossRefGoogle Scholar
  41. 41.
    Weiss M, Daeschlein G, Kramer A, Burchardt M, Brucker S, Wallwiener D, Stope MB. Virucide properties of cold atmospheric plasma for future clinical applications. J Med Virol. 2017;89:952–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Bayliss DL, Walsh JL, Shama G, Iza F, Kong MG. Reduction and degradation of amyloid aggregates by a pulsed radio-frequency cold atmospheric plasma jet. New J Phys. 2009;11:115024.CrossRefGoogle Scholar
  43. 43.
    Aboubakr HA, Gangal U, Youssef MM, Goyal SM, Bruggeman PJ. Inactivation of virus in solution by cold atmospheric pressure plasma: identification of chemical inactivation pathways. J Phys D Appl Phys. 2016;49:204001.CrossRefGoogle Scholar
  44. 44.
    Aboubakr HA, Williams P, Gangal U, Youssef MM, El-Sohaimy SAA, Bruggeman PJ, Goyal SM. Virucidal effect of cold atmospheric gaseous plasma on feline calcivirus, a surrogate for human norovirus. Appl Environ Microbiol. 2015;81:3612–22.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Elaragi G. Inactivation of hepatitis C virus cells using gliding arc discharge. Plasma Med. 2015;5(1):49–55.CrossRefGoogle Scholar
  46. 46.
    Puligundla P, Mok C. Non-thermal plasmas (NTPs) for inactivation of viruses in abiotic environment. Res J Biotechnol. 2016;11(6):91–6.Google Scholar
  47. 47.
    Wu Y, Liang YD, Wei K, Li W, Yao MS, Zhang J, Grinshpun SA. MS2 virus inactivation by atmospheric-pressure cold plasma using different gas carriers and power levels. Appl Environ Microbiol. 2015;81:996–1002.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Yasuda H, Miura T, Kurita H, Takashima K, Mizuno A. Biological evaluation of DANN damage in bacteriophages inactivated by atmospheric pressure cold plasma. Plasma Process Polym. 2010;7:301–8.CrossRefGoogle Scholar
  49. 49.
    Wang GM, Zhu RH, Yang LC, Wang KL, Zhang Q, Su X, Yang B, Zhang J, Fang J. Non-thermal plasma for inactivated vaccine preparation. Vaccine. 2016;34:1126–32.PubMedCrossRefGoogle Scholar
  50. 50.
    Guo J, Huang K, Wang J. Bactericidal effect of various non-thermal plasma agents and the influence of experimental conditions in microbial inactivation: a review. Food Control. 2015;50:482–90.CrossRefGoogle Scholar
  51. 51.
    Mendis DA, Rosenberg M, Azam F. A note on the possible electrostatic disruption of bacteria. IEEE Trans Plasma Sci. 2000;28:1304–6.CrossRefGoogle Scholar
  52. 52.
    Bekeschus S, Iséni S, Reuter S, Masur K, Weltmann KD. Nitrogen shielding of a plasma jet and its effects on human immune cells. IEEE Trans Plasma Sci. 2015;43(3):776–81.CrossRefGoogle Scholar
  53. 53.
    Bekeschus S, Kolata J, Winterbourn C, Kramer A, Turner R, Weltmann KD, Bröker B, Masur K. Hydrogen peroxide: A central player in physical plasma-induced oxidative stress in human blood cells. Free Rad Res. 2014;48:542–9.CrossRefGoogle Scholar
  54. 54.
    Fridman A. Plasma chemistry. New York: Cambridge University Press; 2008.CrossRefGoogle Scholar
  55. 55.
    Kalghatgi S, Kelly CM, Cerchar E, Torabi B, Alekseev O, Fridman A, Friedman G, Azizkhan-Clifford J. Effects of non-thermal plasma on mammalian cells. PLoS One. 2011;6(1):e16270.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Laroussi M. Nonthermal decontamination of biological media by atmospheric pressure plasmas: review, analysis, and prospects. IEEE Trans Plasma Sci. 2002;30:1409–15.CrossRefGoogle Scholar
  57. 57.
    Laroussi M. Low temperature plasma-based sterilization: overview and state of the art. Plasma Process Polym. 2005;2:391–400.CrossRefGoogle Scholar
  58. 58.
    Reuter S, Winter J, Iseni S, Peters S, Schmidt-Bleker A, Dünnbier M, Schäfer J, Foest R, Weltmann KD. Detection of ozone in a MHz argon plasma bullet jet. Plasma Sources Sci Technol. 2012;21(3):034015.CrossRefGoogle Scholar
  59. 59.
    Sakudo A, Misawa T, Shimizu N, Imanishi Y. N2 gas plasma inactivates influenza virus mediated by oxidative stress. Front Biosci. 2014;6:69–79.CrossRefGoogle Scholar
  60. 60.
    Weltmann KD, von Woedtke T. Plasma medicine—current state of research and medical application. Plasma Phys Control Fusion. 2016;59(1):014031.CrossRefGoogle Scholar
  61. 61.
    Boudam MK, Moisan M, Saoudi B, Popovici C, Gherardi N, Massines F. Bacterial spore inactivation by atmospheric-pressure plasmas in the presence or absence of UV photons as obtained with the same gas mixture. J Phys D Appl Phys. 2006;39:3494–507.CrossRefGoogle Scholar
  62. 62.
    Morent R, De Geyter N. Inactivation of bacteria by non-thermal plasmas. In: Fazel-Rezai R, editor. Biomedical engineering—frontiers and challenges. InTech; 2011. p. 25–54.Google Scholar
  63. 63.
    Dezest M, Bulteau AL, Quinton D, Chavatte L, Le Bechec M, Cambus JP, Arbault S, Nègre-Salvayre A, Clément F, Cousty S. Oxidative modification and electrochemical inactivation of Escherichia coli upon cold atmospheric pressure plasma exposure. PLoS One. 2017;12(3):e0173618.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Winterbourn CC, Hampton MB, Livesey JH, Kettle ASJ. Modeling the reactions of superoxide and myeloperoxidase in the neutrophil phagosome. Implications for microbial killing. J Biol Chem. 2006;281:39860–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Heyworth PG, Cross AR, Curnutte JT. Chronic granulomatous disease. Curr Opin Immunol. 2003;15(5):578–84.PubMedCrossRefGoogle Scholar
  66. 66.
    Müller G, Benkhai H, Matthes R, Finke B, Friedrichs W, Geist N, Langel W, Kramer A. Poly(hexamethylene biguanide) adsorption on hydrogen peroxide treated Ti-Al-V alloys and effects on wettability, antimicrobial efficacy, and cytotoxicity. Biomaterials. 2014;35(20):5261–77.PubMedCrossRefGoogle Scholar
  67. 67.
    von Woedtke T, Kramer A. The limits of sterility assurance. GMS Krankenhaushyg Interdiszip. 2008;3(3):Doc19.Google Scholar
  68. 68.
    Gebel J, Werner HP, Kirsch-Altena A, Bansemir K. Standardmethoden der DGHM zur Prüfung chemischer Desinfektionsverfahren. Wiesbaden: Mhp; 2001.Google Scholar
  69. 69.
    Schwebke I, Blümel J, Eggers M, Glebe D, Rapp I, von Rheinbaben F, Sauerbrei A, Steinmann E, Steinmann J, Willkommen H, Wutzler P, Rabenau HF. Mitteilung der Deutschen Vereinigung zur Bekämpfung der Viruskrankheiten e. V. (DVV) und des Robert Koch-Instituts (RKI) zur Veröffentlichung der aktualisierten Fassung der Leitlinie zur Prüfung von chemischen Desinfektionsmitteln auf Wirksamkeit gegen Viren in der Humanmedizin (Suspensionstest)—Fassung 1. 12. 2014. Bgbl Gesundheitsforsch Gesundheitssch. 2015; 58(4):491–2.Google Scholar
  70. 70.
    Desinfektionsmittelkommission im VAH. Anforderungen und Methoden zur VAH-Zertifizierung chemischer Desinfektionscverfahren. Wiesbaden: Mhp; 2015.Google Scholar
  71. 71.
    Kramer A, Briesch H, Christiansen B, Löffler H, Perlitz C, Reichardt C. Empfehlungen zur Händehygiene. Mitteilung der Kommission für Krankenhaushygiene und Infektionsprävention am Robert Koch-Institut. BGBL. 2016;59:1189–220.Google Scholar
  72. 72.
    Robert Koch-Institut, Deutsche Vereinigung zur Bekämpfung der Viruskrankheiten e. V. Deutsche Gesellschaft für Hygiene und Mikrobiologie. Prüfung und Deklaration der Wirksamkeit von Desinfektionsmitteln gegen Viren—Stellungnahme des Arbeitskreises Viruzidie beim Robert Koch-Institut (RKI) sowie des Fachausschusses “Virusdesinfektion” der Deutschen Vereinigung zur Bekämpfung der Viruskrankheiten (DVV) und der Desinfektionsmittelkommission der Deutschen Gesellschaft für Hygiene und Mikrobiologie (DGHM). BGBL. 2004;47(1):62–6.Google Scholar
  73. 73.
    Schwebke I, Arvand M, Eggers M, Gebel J, Geisel B, Rapp I, Steinmann J, Rabenau HF. Empfehlung zur Auswahl viruzider Desinfektionsmittel—eine neue Stellungnahme des Arbeitskreises Viruzidie beim RKI. .
  74. 74.
    Pitten FA, Werner HP, Kramer A. A standardized test to assess the impact of different organic challenges on the antimicrobial activity of antiseptics. J Hosp Infect. 2003;55:108–15.PubMedCrossRefGoogle Scholar
  75. 75.
    Schedler K, Assadian O, Brautferger U, Müller G, Koburger T, Classen S, Kramer A. Proposed phase 2/ step 2 in-vitro test on basis of EN 14561 for standardised testing of the wound antiseptics PVP-iodine, chlorhexidine digluconate, polihexanide and octenidine dihydrochloride. BMC Infect Dis. 2017;17(1):143.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Moisan M, Barbeau J, Moreau S, Pelletier J, Tabrizian M, Yahia LH. Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. Int J Pharm. 2001;226:1–21.PubMedCrossRefGoogle Scholar
  77. 77.
    Kohnen W, Fleischhack R, Kaiser U, Kühne T, Salzbrunn R, Getreuer H, Wegner WD, Jatzwauk L. Grundlagen der Sterilisation. In: Kramer A, Assadian O, Exner M, Hübner N-O, Simon A, editors. Krankenhaus- und Praxishygiene—Hygienemanagement und Infektionsprävention in medizinischen und sozialen Einrichtungen. München. 3. Aufl.: Urban Fischer; 2016. p. 64–95.Google Scholar
  78. 78.
    DIN EN 14885. Chemical disinfectants and antiseptics - application of European standards for chemical disinfectants and antiseptics. Hamburg: Beuth; 2015–11.Google Scholar
  79. 79.
    Okpara-Hofmann J, Knoll M, Dürr M, Schmitt B, Borneff-Lipp M. Comparison of low-temperature hydrogen peroxide gas plasma sterilization for endoscopes using various Sterrad models. J Hosp Infect. 2005;59(4):280–5.PubMedCrossRefGoogle Scholar
  80. 80.
    Singh MK, Nagatsu M. Large-volume plasma device with internally mounted face-type planar microwave launchers for low-temperature sterilization. Plasma Med. 2015;5(2–4):159–75.CrossRefGoogle Scholar
  81. 81.
    Sato T, Furui T. Generation process and sterilization effect of oh radical in a steam plasma flow at atmospheric pressure for a plasma autoclave. Plasma Med. 2015;5(2–4):299–314.CrossRefGoogle Scholar
  82. 82.
    Boyce JM. Modern technologies for improving cleaning and disinfection of environmental surfaces in hospitals. Antimicrob Resist Infect Control. 2016;5:10.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Mirmoghtadaie L, Aliabadi SS, Hosseini SM. Recent approaches in physical modification of protein functionality. Food Chem. 2016;199:619–27.PubMedCrossRefGoogle Scholar
  84. 84.
    Scholtz V, Pazlarova J, Souskova H, Khun J, Julak J. Nonthermal plasma—a tool for decontamination and disinfection. Biotechnol Adv. 2015;33:1108–19.PubMedCrossRefGoogle Scholar
  85. 85.
    Claro T, Fay R, Murphy C, O’Connor N, Daniels S, Humphreys H. Cold plasma technology and reducing surface bacterial counts: a pilot study. Infect Control Hosp Epidemiol. 2017;38:494–6.PubMedCrossRefGoogle Scholar
  86. 86.
    Froehling A, Schlueter O. Flow cytometric evaluation of physico-chemical impact on gram-positive and gram-negative bacteria. Front Microbiol. 2015;6:939.Google Scholar
  87. 87.
    Cahill OJ, Claro T, O’Connor N, Cafolla AA, Steven NT, Daniels S, Humphreys H. Cold air plasma to decontaminate inanimate surfaces of the hospital environment. Appl Environ Microbiol. 2014;80(6):2004–10.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Golkowski M, Leszczynski J, Plimpton SR, McCollister B, Golkowski C. In vitro and in vivo analysis of hydrogen peroxide-enhanced plasma-induced effluent for infection and contamination mitigation at research and medical facilities. Plasma Med. 2015;5(2–4):109–23.CrossRefGoogle Scholar
  89. 89.
    Li YF, Shimizu T, Zimmermann JL, Morfill GE. Cold atmospheric plasma for surface disinfection. Shimizu Plasma Proc Polym. 2012;9(6):585–9.CrossRefGoogle Scholar
  90. 90.
    Morrison KA, Asanbe O, Dong X, Weinstein AL, Toyoda Y, Guevara D, Kirkels E, Landford W, Golkowski C, Golkowski M, Spector JA. Rapid sterilization of cell phones using a novel portable non-thermal plasma device. Plasma Med. 2015;5(1):57–70.CrossRefGoogle Scholar
  91. 91.
    Müller M, Semenov I, Binder S, Zimmermann JL, Shimizu T, Morfill GE, Rettberg P, Thoma MH, Thomas HM. Cold atmospheric plasma technology for decontamination of space equipment. 6th Int Conf Plasma Medicine (ICPM-6), 2016, Bratislava, Slovakia.
  92. 92.
    Duske K, Jablonowski L, Koban I, Matthes R, Holtfreter B, Sckell A, Nebe JB, von Woedtke T, Weltmann KD, Kocher T. Cold atmospheric plasma in combination with mechanical treatment improves osteoblast growth on biofilm covered titanium discs. Biomaterials. 2015;52:327–34.CrossRefPubMedGoogle Scholar
  93. 93.
    Krcma F, Klimova E, Mazankova V, Dostal L, Obradovic B, Nikiforov A, Vanraes P. Novel plasma source based on pin-hole discharge configuration. Plasma Med. 2016;6(1):21–31.CrossRefGoogle Scholar
  94. 94.
    Kramer A, Pittet D, Klasinc R, Krebs S, Koburger T, Fusch C, Assadian O. Shortening the application time of alcohol-based hand rubs to 15 s may improve frequency of hand antisepsis. ICHE. In rev.Google Scholar
  95. 95.
    Kramer A, Rudolph P, Kampf G, Pittet D. Limited efficacy of alcohol-based hand gels. Lancet. 2002;359(9316):1489–90.PubMedCrossRefGoogle Scholar
  96. 96.
    Paula H, Krebs U, Becker R, Assadian O, Heidecke CD, Kramer A. Wettability of hands during 15s and 30s contact intervals: a prospective, randomized cross-over study. J Hosp Inf. In rev.Google Scholar
  97. 97.
    Pires D, Soule H, Bellissimo-Rodrigues F, Pittet D. Hand hygiene with alcohol-based hand rub: how long is long enough? Infect Control Hosp Epidemiol. 2017;6:65.Google Scholar
  98. 98.
    Gessner S, Below E, Diedrich S, Wegner C, Gessner W, Kohlmann T, Heidecke CD, Bockholdt B, Kramer A, Assadian O, Below H. Ethanol and ethyl glucuronide urine concentrations after ethanol-based hand antisepsis with and without permitted alcohol consumption. Am J Infect Control. 2016;44(9):999–1003.PubMedCrossRefGoogle Scholar
  99. 99.
    Kramer A, Harnoss JC, Walger P, Heidecke CD, Schreiber A, Maier S, Pochhammer J. Hygiene in der Allgemein- und Viszeralchirurgie—Fachspezifische Maßnahmen zur Prävention von Surgical Site Infections (SSI). Zbl Chir. 2016;141(06):591–6.PubMedGoogle Scholar
  100. 100.
    Kampf G, Kramer A. Epidemiologic background of hand hygiene and evaluation of the most important agents for scrubs and rubs. Clin Microbiol Rev. 2004;17(4):863–93.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Osman I, Ponukumati A, Vargas M, Bhakta D, Ozoglu B, Bailey C. Plasma-activated vapor for sanitization of hands. Plasma Med. 2016;6(3–4):235–45.CrossRefGoogle Scholar
  102. 102.
    Ulmer M, Lademann J, Patzelt A, Knorr F, Kramer A, Koburger T, Assadian O, Daeschlein G, Lange-Asschenfeldt B. New strategies for preoperative skin antisepsis. Skin Pharmacol Physiol. 2014;27(6):283–92.PubMedCrossRefGoogle Scholar
  103. 103.
    Lange-Asschenfeldt B, Marenbach D, Lang C, Patzelt A, Ulrich M, Maltusch A, Terhorst D, Stockfleth E, Sterry W, Lademann J. Distribution of bacteria in the epidermal layers and hair follicles of the human skin. Skin Pharmacol Physiol. 2011;24:305–11.PubMedCrossRefGoogle Scholar
  104. 104.
    Kamel C, McGahan L, Polisena J, Mierzwinski-Urban M, Embil JM. Preoperative skin antiseptic preparations for preventing surgical site infections: a systematic review. Infect Control Hosp Epidemiol. 2012;33(6):608–17.PubMedCrossRefGoogle Scholar
  105. 105.
    Ouf SA, El-Adly AA, Mohamed AAH. Inhibitory effect of silver nanoparticles mediated by atmospheric pressure air cold plasma jet against dermatophyte fungi. J Med Microbiol. 2015;64:1151–61.PubMedCrossRefGoogle Scholar
  106. 106.
    Shapourzadeh A, Rahimi-Verki N, Atyabi SM, Shams-Ghahfarokhi M, Jahanshiri Z, Irani S, Razzaghi-Abyaneh M. Inhibitory effects of cold atmospheric plasma on the growth, ergosterol biosynthesis, and keratinase activity in Trichophyton rubrum. Arch Biochem Biophys. 2016;608:27–33.PubMedCrossRefGoogle Scholar
  107. 107.
    Rahimi-Verki N, Shapoorzadeh A, Razzaghi-Abyaneh M, Atyabi SM, Shams-Ghahfarokhi M, Jahanshiri Z, Gholami-Shabani M. Cold atmospheric plasma inhibits the growth of Candida albicans by affecting ergosterol biosynthesis and suppresses the fungal virulence factors in vitro. Photodiagn Photodyn Ther. 2016;13:66–72.CrossRefGoogle Scholar
  108. 108.
    Xiong ZL, Roe J, Grammer TC, Graves DB. Plasma treatment of onychomycosis. Plasma Process Polym. 2016;13:588–97.CrossRefGoogle Scholar
  109. 109.
    Habib M, Hottel TL, Hong L. Antimicrobial effects of non-thermal atmospheric plasma as a novel root canal disinfectant. Clin Plasma Med. 2014;2:17–21.CrossRefGoogle Scholar
  110. 110.
    Li YL, Sun K, Ye GP, Liang YD, Pan H, Wang GM, Zhao YJ, Pan J, Zhang J, Fang J. Evaluation of cold plasma treatment and safety in disinfecting 3-week root canal enterococcus faecalis biofilm in vitro. J Endod. 2015;41:1325–30.PubMedCrossRefGoogle Scholar
  111. 111.
    Pignata C, DÁngelo D, Fea E, Gilli G. A review on microbiological decontamination of fresh produce with nonthermal plasma. J Appl Microbiol. 2017;122:1438–55.PubMedCrossRefGoogle Scholar
  112. 112.
    Pierdzioch P, Hartwig S, Herbst SR, Raguse JD, Dommisch H, Abu-Sirhan S, Wirtz HC, Hertel M, Paris S, Preissner S. Cold plasma: a novel approach to treat infected dentin—a combined ex vivo and in vitro study. Clin Oral Investig. 2016;20:2429–35.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Wang GM, Sun PP, Pan H, Ye GP, Sun K, Zhang J, Pan J, Fang J. Inactivation of Candida albicans on polymethyl methacrylate and enhancement of the drug susceptibility by cold Ar/O2 plasma jet. Plasma Chem Plasma Process. 2016;36:383–96.CrossRefGoogle Scholar
  114. 114.
    Preissner S, Wirtz HC, Tietz AK, Abu-Sirhan S, Herbst SR, Hartwig S, Pierdzioch P, Schmidt-Westhausen AM, Dommisch H, Hertel M. Bactericidal efficacy of tissue tolerable plasma microrough titanium dental implantats: an in-vitro-study. J Biophotonics. 2016;9:637–44.PubMedCrossRefGoogle Scholar
  115. 115.
    Maisch T, Shimizu T, Li YF, Heinlin J, Karrer S, Morfill G, Zimmermann JL. Decolonisation of MRSA, S. aureus and E. coli by cold-atmospheric plasma using a porcine skin model in vitro. PLoS One. 2012;7(4):e34610.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Köck R, Becker K, Cookson B, van Gemert-Pijnen JE, Harbarth S, Kluytmans J, Mielke M, Peters G, Skov RL, Struelens MJ, Tacconelli E, Witte W, Friedrich AW. Systematic literature analysis and review of targeted preventive measures to limit healthcare-associated infections by meticillin-resistant Staphylococcus aureus. Euro Surveill. 2014;19(29):20860.PubMedCrossRefGoogle Scholar
  117. 117.
    Li X, Farid M. A review on recent development in non-conventional food sterilization technologies. J Food Engin. 2016;182:33–45.CrossRefGoogle Scholar
  118. 118.
    Mok C, Lee T, Puligundla P. Afterglow corona discharge air plasma (ACDAP) for inactivation of common food-borne pathogens. Food Res Int. 2015;69:418–23.CrossRefGoogle Scholar
  119. 119.
    Shaw A, Shama G, Iza F. Emerging applications of low temperature gas plasmas in the food industry. Biointerphases. 2015;10:029402.PubMedCrossRefGoogle Scholar
  120. 120.
    Surowky B, Schlueter O, Knorr D. Interactions of non-thermal atmospheric pressure plasma with solid and liquid food systems: a review. Food Eng Rev. 2015;7:82–108.CrossRefGoogle Scholar
  121. 121.
    Abdi S, Dorranian D, Mohammadi K. Effect of oxygen on decontamination of cumin seeds by atmospheric pressure dielectric barrier discharge plasma. Plasma Med. 2016;6(3–4):339–47.CrossRefGoogle Scholar
  122. 122.
    Afshari R, Hosseini H. Non-thermal plasma as a new food preservation method, its present and future prospect. Winter. 2014;5(1):116–20.Google Scholar
  123. 123.
    Al-Bukhaiti WQ, Noman A, Mahdi A. Characteristics and applications of cold atmospheric plasma—review. Int J Agricult Innov Res. 2016;5(2):257–61.Google Scholar
  124. 124.
    Amini M, Ghoranneviss M. Black and green tea decontamination by cold plasma. Res J Microbiol. 2016;11:42–6.CrossRefGoogle Scholar
  125. 125.
    Dey A, Rasane P, Choudhury A, Singh J, Maisnam D, Rasane P. Cold plasma processing: a review. J Chem Pharmac Sci. 2016;9(4):2980–4.Google Scholar
  126. 126.
    Georgescu N, Apostol L, Gherendi F. Inactivation of Salmonella enterica serovar typhimurium on egg surface, by direct and indirect treatments with cold atmospheric plasma. Food Control. 2017;76:52–61.CrossRefGoogle Scholar
  127. 127.
    Grabowski M, Strzelczak A, Dąbrowski W. Low pressure cold plasma as an alternative method for black pepper sterilization. J Life Sci. 2014;8:931–9.Google Scholar
  128. 128.
    Gurol C, Ekinci FY, Aslan N, Korachi M. Low temperature plasma for decontamination of E. coli in milk. Int J Food Microbiol. 2012;157(1):1–5.PubMedCrossRefGoogle Scholar
  129. 129.
    Han L, Ziuzina D, Heslin CM, Boehm D, Patange A, Millan-Sango D, Valdramidis V, Cullen P, Bourke P. Controlling microbial safety challenges of meat using high voltage atmospheric cold plasma. Front Microbiol. 2016;7:977.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Hertwig C, Reineke K, Ehlbeck J, Knorr D, Schlüter O. Decontamination of whole black pepper using different cold atmospheric pressure plasma applications. Food Control. 2015;55:221–9.CrossRefGoogle Scholar
  131. 131.
    Korachi M, Aslan N. Low temperature atmospheric plasma for microbial decontamination. Microbial pathogens and strategies for combating them. J Sci Educ Technol. 2013;1:453–9.Google Scholar
  132. 132.
    Korachi M, Ozen F, Asian N, Vannini L, Guerzoni ME, Gottardi D, Ekinci FY. Biochemical changes to milk following treatment by a novel, cold atmospheric plasma system. Int Dairy J. 2015;42:64–9.CrossRefGoogle Scholar
  133. 133.
    Misra NN, Segat A, Cullen PJ. Atmospheric-pressure non-thermal plasma decontamination of foods. In: Rai VR, editor. Advances in food biotechnology. Wiley-Blackwell; 2015.CrossRefGoogle Scholar
  134. 134.
    Moritz M, Wiacek C, Koethe M, Braun PG. Atmospheric pressure plasma jet treatment of salmonella enteritidis inoculated eggshells. Int J Food Microbiol. 2017;245:22–8.PubMedCrossRefGoogle Scholar
  135. 135.
    Niemira BA. Cold plasma decontamination of foods. Annu Rev Food Sci Technol. 2012;3:125–42.PubMedCrossRefGoogle Scholar
  136. 136.
    Noriega E, Shama G, Laca A, Díaz M, Kong MG. Cold atmospheric gas plasma disinfection of chicken meat and chicken skin contaminated with Listeria innocua. Food Microbiol. 2011;28(7):1293–300.PubMedCrossRefGoogle Scholar
  137. 137.
    Pasquali F, Stratakos AC, Koidis A, Berardinelli A, Cevoli C, Ragni L, Mancusi R, Manfreda G, Trevisani M. Atmospheric cold plasma process for vegetible leaf decontamination: A feasibility study on radicchio (red chicory, Cichorium intybus L.). Food Control. 2016;60:552–9.CrossRefGoogle Scholar
  138. 138.
    Perni S, Liu DW, Shama G, Kong MG. Cold atmospheric plasma decontamination of the pericarps of fruit. J Food Prot. 2008;71(2):302–8.PubMedCrossRefGoogle Scholar
  139. 139.
    Perni S, Shama G, Kong MG. Cold atmospheric plasma disinfection of cut fruit surfaces contaminated with migrating microorganisms. J Food Prot. 2008;71(8):1619–25.PubMedCrossRefGoogle Scholar
  140. 140.
    Puligundla P, Lee T, Mok C. Inactivation effect of dielectric barrier discharge plasma against foodborne pathogens on the surfaces of different packaging materials. Innovative Food Sci Emerg Technol. 2016;36:221–7.CrossRefGoogle Scholar
  141. 141.
    Schnabel U, Niquet R, Andrasch M, Jakobs M, Schlüter O, Katroschan KU, Weltmann KD, Ehlbeck J. Broccoli: Antimicrobial efficacy and influences to sensory and storage properties by microwave plasma-processed air treatment. Plasma Med. 2016;6(3–4):375–88.CrossRefGoogle Scholar
  142. 142.
    Smet C, Noriega E, Rosier F, Walsh J, Valdramidis V, Impe van J. Influence of food intrinsic factors on the inactivation efficacy of cold atmospheric plasma: impact of osmotic stress, suboptimal pH and food structure. Innovative Food Sci Emerg Technol 2016 38B: 393–406.CrossRefGoogle Scholar
  143. 143.
    Smet C, Noriega E, Rosier F, Walsh J, Valdramidis V, van Impe J. Impact of food model (micro)structure on the microbial inactivation efficacy of cold atmospheric plasma. Int J Food Microbiol. 2017;240:47–56.PubMedCrossRefGoogle Scholar
  144. 144.
    Song AY, YA O, Roh SH, Kim JH, Min SC. Cold oxygen plasma treatment for the improvement of the physicochemical and biodegradable properties of polylactic acid films for food packing. J Food Sci. 2016;81:E86–96.PubMedCrossRefGoogle Scholar
  145. 145.
    Stoica M, Alexe P, Mihalcea L. Atmospheric cold plasma as new strategy for foods processing - an overview. Innov Rom Food Biotechnol. 2014;15:1–8.Google Scholar
  146. 146.
    Ulbin-Figlewicz N, Brychcy E, Jarmoluk A. Effect of low-pressure cold plasma on surface microflora of meat and quality attributes. J Food Sci Technol. 2015;52:1228–32.PubMedCrossRefGoogle Scholar
  147. 147.
    Ulbin-Figlewicz N, Jarmoluk A, Marycz K. Antimicrobial activity of low-pressure plasma treatment against selected foodborne bacteria and meat microbiota. Ann Microbiol. 2015;65:1537–46.PubMedCrossRefGoogle Scholar
  148. 148.
    Wan ZF, Chen Y, Pankaj SK, Keener KM. High voltage atmospheric cold plasma treatment of refrigerated chicken eggs for control of Salmonella Enteritidis contamination on egg shell. LTW Food Sci Technol. 2017;76:124–30.Google Scholar
  149. 149.
    Ziuzina D, Misra NN, Cullen PJ, Keener K, Mosnier JP, Vilaró I, Gaston E, Bourke P. Demonstrating the potential of industrial scale in-package atmospheric cold plasma for decontamination of cherry tomatoes. Plasma Med. 2016;6(3–4):387–412.Google Scholar
  150. 150.
    Ziuzina D, Patil S, Cullen PJ, Keener KM, Bourke P. Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiol. 2014;42:109–16.PubMedCrossRefGoogle Scholar
  151. 151.
    Ziuzina D. Patil., Cullen PJ, Keener KM, Bourke P. Atmospheric cold plasma inactivation of Escherichia coli in liquid media inside a sealed package. J Appl Microbiol. 2013;114:778–87.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Ouf SA, Mohamed AAH, El-Sayed WS. Fungal decontamination of fleshy fruit washes by double atmospheric pressure cold plasma. Clean Soil Air Water. 2015;44:134–42.CrossRefGoogle Scholar
  153. 153.
    Jahid IK, Han N, Zhang CY, Ha SD. Mixed culture biofilms of Salmonella typhimurium and cultivable indigenous microorganisms on lettuce show enhanced resistance of their sessile cells to cold oxygen plasma. Food Microbiol. 2015;46:383–94.PubMedCrossRefGoogle Scholar
  154. 154.
    Lee H, Kim JE, Chung MS, Min SC. Cold plasma treatment for the microbiological safety of cabbage, lettuce, and dried figs. Food Microbiol. 2015;51:74–80.PubMedCrossRefGoogle Scholar
  155. 155.
    Min SC, Roh SH, Boyd G, Sites JE, Uknalis J, Fan XT, Niemira BA. Inactivation of Escherichia coli O157:H7 and aerobic microorganisms in Romaine lettuce packaged in a commercial polyethylene terephthalate container using atmospheric cold plasma. J Food Prot. 2017;80:35–43.PubMedCrossRefGoogle Scholar
  156. 156.
    Min SC, Roh SH, Niemira BA, Sites JE, Boyd G, Lacombe A. Dielectric barrier discharge atmospheric cold plasma inhibits Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and Tulane virus in Romaine lettuce. Int J Food Microbiol. 2016;237:114–20.PubMedCrossRefGoogle Scholar
  157. 157.
    Song AY, YJ O, Kim JE, Bin Song K, DH O, Min SC. Cold plasma treatment for microbial safety and preservation of fresh lettuce. Food Sci Biotechnol. 2015;24:1717–24.CrossRefGoogle Scholar
  158. 158.
    Cui HY, Ma CX, Li CZ, Lin L. Enhancing the antibacterial activity of thyme oil against Salmonella on eggshell by plasma-assisted process. Food Control. 2016;70:183–90.CrossRefGoogle Scholar
  159. 159.
    Cui HY, Ma CX, Lin L. Synergistic antibacterial efficacy of cold nitrogen plasma and clove oil against Escherichia coli O157:H7 biofilms on lettuce. Food Control. 2016;66:8–16.CrossRefGoogle Scholar
  160. 160.
    Cui HY, Wu J, Li CZ, Lin L. Promoting anti-listeria activity of lemongrass oil on pork loin by cold nitrogen plasma assist. J Food Saf. 2017;37:e12316.CrossRefGoogle Scholar
  161. 161.
    Segat A, Misra NN, Cullen PJ, Innocente N. Effect of atmospheric pressure cold plasma (ACP) on activity and structure of alkaline phosphatase. Food Bioprod Process. 2016;98:181–8.CrossRefGoogle Scholar
  162. 162.
    Amini M, Ghoranneviss M. Effects of cold plasma treatment on antioxidants activity, phenolic contents and shelf life of fresh and dried walnut (Juglans regia L.) cultivars during storage. LWT Food Science and Technology. 2016;73:178–84.CrossRefGoogle Scholar
  163. 163.
    Bosch ten L, Pfohl K, Avramidis G, Wieneke S, Viöl W, Karlovsky P. Plasma-based degradation of mycotoxins produced by fusarium, aspergillus and alternaria species. Toxins. 2017;9:97.CrossRefGoogle Scholar
  164. 164.
    Dasan BG, Boyaci IH, Mutlu M. Inactivation of aflatoxigenic fungi (Aspergillus spp.) on granular food model, maize, in an atmospheric pressure fluidized bed plasma system. Food Control. 2016;70:1–8.CrossRefGoogle Scholar
  165. 165.
    Devi Y, Thirumdas R, Sarangapani C, Deshmukh RR, Annapure US. Influence of cold plasma on fungal growth and aflatoxins production on groundnuts. Food Control. 2017;77:187–91.CrossRefGoogle Scholar
  166. 166.
    Kim JE, YJ O, Won MY, Lee KS, Min SC. Microbial decontamination of onion powder using microwave-powered cold plasma treatments. Food Microbiol. 2017;62:112–23.PubMedCrossRefGoogle Scholar
  167. 167.
    Ouf SA, Basher AH, Mohamed AAH. Inhibitory effect of double atmospheric argon cold plasma on spores and mycotoxin production of Aspergillus niger contaminating date palm fruits. J Sci Food Agric. 2015;95:3204–10.PubMedCrossRefGoogle Scholar
  168. 168.
    Sohbatzadeh F, Mirzanejhad S, Shokri H, Nikpour M. Inactivation of Aspergillus flavus spores in a sealed package by cold plasma streamers. J Theor Appl Phys. 2016;10:99–106.CrossRefGoogle Scholar
  169. 169.
    Won MY, Lee SJ, Min SC. Mandarin preservation by microwave-powered plasma treatment. Innovative Food Sci Emerg Technol. 2017;39:25–32.CrossRefGoogle Scholar
  170. 170.
    Yong HI, Lee H, Park S, Park J, Choe W, Jung S, Jo C. Flexible thin-layer plasma inactivation of bacteria and mold survival in beef jerky packaging and its effects on the meat’s physicochemical properties. Meat Sci. 2017;123:151–8.PubMedCrossRefGoogle Scholar
  171. 171.
    Hojnik N, Cvelbar U, Tavčar-Kalcher G, Walsh JL, Križaj I. Mycotoxin decontamination of food: Cold atmospheric pressure plasma versus “classic” decontamination. Toxins. 2017;9(5):151.PubMedCentralCrossRefGoogle Scholar
  172. 172.
    Karlovsky P, Suman M, Berthiller F, Meester JD, Eisenbrand G, Perrin I, Oswald IP, Speijers G, Chiodini A, Recker T, Dussort P. Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Res. 2016;32(4):179–205.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Park BJ, Takatori K, Sugita-Konishi Y, Kim IH, Lee MH, Han DW, Chung KH, Hyun SO, Park JC. Degradation of mycotoxins using microwave-induced argon plasma at atmospheric pressure. Surf Coat Technol. 2007;201:5733–7.CrossRefGoogle Scholar
  174. 174.
    Shi H, Ileleji K, Stroshine RL, Keener K, Jensen JL. Reduction of aflatoxin in corn by high voltage atmospheric cold plasma. Food Bioprocess Technol. 2017;10:1042–52.CrossRefGoogle Scholar
  175. 175.
    Siciliano I, Spadaro D, Prelle A, Vallauri D, Cavallero MC, Garibaldi A, Gullino ML. Use of cold atmospheric plasma to detoxify hazelnuts from aflatoxins. Toxins (Basel). 2016;8(5):125.CrossRefGoogle Scholar
  176. 176.
    Puligundla P, Mok C. Potential applications of nonthermal plasmas against biofilm-associated micro-organisms in vitro. J Appl Microbiol. 2017;122:1134–48.PubMedCrossRefGoogle Scholar
  177. 177.
    Bauer A, Ni Y, Bauer S, Paulsen P, Modic M, Walsh JL, Smulders FJM. The effects of atmospheric pressure cold plasma treatment on microbiological, physical-chemical and sensory characteristics of vacuum packaged beef loin. Meat Sci. 2017;128:77–87.PubMedCrossRefGoogle Scholar
  178. 178.
    Han L, Boehm D, Amias E, Milosavljevic V, Cullen PJ, Bourke P. Atmospheric cold plasma interactions with modified atmosphere packaging inducer gases for safe food preservation. Innov Food Sci Emerg Technol. 2016;38:384–92.CrossRefGoogle Scholar
  179. 179.
    Han SH, Suh HJ, Hong KB, Kim SY, Min SC. Oral toxicity of cold plasma-treated edible films for food coating. J Food Sci. 2016;81:T3052–7.PubMedCrossRefGoogle Scholar
  180. 180.
    Rothrock MJ, Zhuang H, Lawrence KC, Bowker BC, Gamble GR, Hiett KL. In-package inactivation of pathogenic and spoilage bacteria associated with poultry using dielectric barrier discharge cold plasma treatments. Curr Microbiol. 2017;74:149–58.PubMedCrossRefGoogle Scholar
  181. 181.
    Wang JM, Zhuang H, Hinton A, Zhang JH. Influence of in-package cold plasma treatment on microbiological shelf life and appearance of fresh chicken breast fillets. Food Microbiol. 2016;60:142–6.PubMedCrossRefGoogle Scholar
  182. 182.
    Wang JM, Zhuang H, Zhang JH. Inactivation of spoilage bacteria in package by dielectric barrier discharge atmospheric cold plasma-treatment time effects. Food Bioprocess Technol. 2016;9:1648–52.CrossRefGoogle Scholar
  183. 183.
    Calvo T, Alvarez-Ordonez A, Prieto M, Gonzalez-Raurich M, Lopez M. Influence of processing parameters and stress adaptation on the inactivation of listeria monocytogenes by non-thermal atmospheric plasma (NTAP). Food Res Int. 2016;89:631–7.PubMedCrossRefGoogle Scholar
  184. 184.
    Misra NN, Pankaj SK, Segat A, Ishikawa K. Cold plasma interactions with enzymes in foods and model systems. Trends Food Sci Technol. 2016;55:39–47.CrossRefGoogle Scholar
  185. 185.
    Thirumdas R, Sarangapani C, Annapure US. Cold plasma: a novel non-thermal technology for food processing. Food Biophys. 2015;10:1–11.CrossRefGoogle Scholar
  186. 186.
    Bussler S, Ehlbeck J, Schlueter O. Pre-drying treatment of plant related tissues using plasma processed air: Impact on enzyme activity and quality attributes of cut apple and potato. Innov Food Sci Emerg Technol. 2017;40:78–86.CrossRefGoogle Scholar
  187. 187.
    Shaer ME, Mobasher M, Abdelghany A. Effect of gliding arc plasma on plant nutrient content and enzyme activity. Plasma Med. 2016;6(3–4):209–18.CrossRefGoogle Scholar
  188. 188.
    Khani MR, Shokri B, Khajeh K. Studying the performance of dielectric barrier discharge and gliding arc plasma reactors in tomato peroxidise inactivation. J Food Eng. 2017;197:107–12.CrossRefGoogle Scholar
  189. 189.
    Thirumdas R, Kadam D, Annapure US. Cold plasma: an alternative technology for the starch modification. Food Biophys. 2017;12:129–39.CrossRefGoogle Scholar
  190. 190.
    Pankaj SK, Bueno-Ferrer C, Misra NN, O’Neill L, Tiwari BK, Bourke P, Cullen PJ. Dielectric barrier discharge atmospheric air plasma treatment of high amylase corn starch films. LWT Food Sci Technol. 2015;63:1076–83.CrossRefGoogle Scholar
  191. 191.
    Thirumdas R, Deshmukh RR, Annapure US. Effect of low temperature plasma on the functional properties of basmati rice flour. J Food Sci Technol. 2016;53(6):2742–51.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Thirumdas R, Trimukhe A, Deshmukh RR, Annapure US. Functional and rheological properties of cold plasma treated rice starch. Carbohydr Polym. 2017;157:1723–31.PubMedCrossRefGoogle Scholar
  193. 193.
    Sarangapani C, Devi Y, Thirumdas R, Annapure US, Deshmukh RR. Effect of low-pressure plasma on physico-chemical properties of paraboiled rice. LWT Food Sci Technol. 2015;63:452–60.CrossRefGoogle Scholar
  194. 194.
    Bahrami N, Bayliss D, Chope G, Penson S, Perehinec T, Fisk ID. Cold plasma: A new technology to modify wheat flour functionality. Food Chem. 2016;202:247–53.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Segat A, Misra NN, Cullen PJ, Innocente N. Atmospheric pressure cold plasma (ACP) treatment of whey protein isolate model solution. Innovative Food Sci Emerg Technol. 2015;29:247–54.CrossRefGoogle Scholar
  196. 196.
    Sahin O, Kaya M, Saka C. Plasma-surface modification on bentonite clay to improve the performance of adsorption of methylene blue. Appl Clay Sci. 2015;116:46–53.CrossRefGoogle Scholar
  197. 197.
    Moghaddam MS, Heydari G, Tuominen M, Fielden M, Haapanen J, Makela JM, Walinder MEP, Claesson PM, Swerin A. Hydrophobisation of wood surfaces by combining liquid flame spray (LFS) and plasma treatment: dynamic wetting properties. Holzforschung. 2016;70:527–37.CrossRefGoogle Scholar
  198. 198.
    Huynh A, Li T, Kovalenko M, Robinson RD, Fridman AA, Rabinovich A, Fridman G. Nonequilibrium plasma decontamination of corn steep liquor for ethanol production: SO2 removal and disinfection. Plasma Med. 2016;6(3–4):219–34.CrossRefGoogle Scholar
  199. 199.
    Buonopane GJ, Antonacci C, Lopez JL. Effect of cold plasma processing on botanicals and their essential oils. Plasma Med. 2016;6(3–4):315–24.CrossRefGoogle Scholar
  200. 200.
    Gholami A, Safa NN, Khoram M, Hadian J, Ghomi H. Effect of low-pressure radio frequency plasma on ajwain seed germination. Plasma Med. 2016;6(3–4):389–96.CrossRefGoogle Scholar
  201. 201.
    Holc M, Junkar I, Primc G, Iskra J, Titan P, Mlakar SG, Kovac J, Mozetic M. Improved sprout emergence of garlic cloves by plasma treatment. Plasma Med. 2016;6(3–4):325–38.CrossRefGoogle Scholar
  202. 202.
    Hayashi N, Ono R, Nakano R, Shiratani M, Tashiro K, Kuhara S, Yasuda K, Hagiwara H. DNA microarray analysis of plant seeds irradiated by active oxygen species in oxygen plasma. Plasma Med. 2016;6(3–4):459–71.CrossRefGoogle Scholar
  203. 203.
    Brar J, Jiang J, Oubarri A, Ranieri P, Fridman AA, Fridman G, Miller V, Peethambaran B. Non-thermal plasma treatment of flowing water: a solution to reduce water usage and soil treatment cost without compromising yield. Plasma Med. 2016;6(3–4):413–27.CrossRefGoogle Scholar
  204. 204.
    Peethambaran B, Han J, Kermalli K, Jiaxing J, Fridman G, Balsamo R, Fridman AA, Miller V. Nonthermal plasma reduces water consumption while accelerating arabidopsis thaliana growth and fecundity. Plasma Med. 2015;5(2–4):87–98.CrossRefGoogle Scholar
  205. 205.
    Haertel B, Backer C, Lindner K, Musebeck D, Schulze C, Wurster M, von Woedtke T, Lindequist U. Effects of physical plasma on biotechnological processes in mycelia of the cultivated lingzhi or reishi medicinal mushroom Ganoderma lucidum (Agaricomycetes). Int J Med Mushrooms. 2016;18(6):521–31.CrossRefGoogle Scholar
  206. 206.
    Leclaire C, Lecoq E, Orial G, Clement F, Bousta F. Fungal decontamination by cold plasma: an innovating process for wood treatment. Braga: COST Action IE0601 / ESWM—Int Conf; 2008; 5–7. .
  207. 207.
    Zahoranova A, Henselova M, Hudecova D, Kalinakova B, Kovacik D, Medvecka V, Cernak M. Effect of cold atmospheric pressure plasma on the wheat seedlings vigor and on the inactivation of microorganisms on the seed surface. Plasma Chem Plasma Process. 2016;36:397–414.CrossRefGoogle Scholar
  208. 208.
    Kordas L, Pusz W, Czapka T, Kacprzyk R. The effect of low-temperature plasma on fungus colonization of winter wheat grain and seed quality. Pol J Environ Stud. 2015;24:433–8.Google Scholar
  209. 209.
    Stepczynska M. Surface modification by low temperature plasma: sterilization of biodegradable materials. Plasma Process Polym. 2016;13:1080–8.CrossRefGoogle Scholar
  210. 210.
    Li L, Li JG, Shen MC, Zhang CL, Dong YH. Cold plasma treatment enhances oilseed rape seed germination under drought stress. Sci Rep. 2015;5:13033.CrossRefGoogle Scholar
  211. 211.
    Mohamed AAH, Al Shariff SM, Ouf SA, Benghanem M. Atmospheric pressure plasma jet for bacterial decontamination and property improvement of fruit and vegetable processing wastewater. J Phys D Appl Phys. 2016;49:195401.CrossRefGoogle Scholar
  212. 212.
    Benidris E, Ghezzar MR, Ma A, Ouddane B, Addou A. Water purification by a new hybrid plasma-sensitization-coagulation process. Sep Purif Technol. 2017;178:253–60.CrossRefGoogle Scholar
  213. 213.
    Ikawa S, Tani A, Nakashima Y, Kitano K. Physicochemical properties of bactericidal plasma-treated water. J Phys D Appl Phys. 2016;49:425401.CrossRefGoogle Scholar
  214. 214.
    Rashmei Z, Bornasi H, Ghoranneviss M. Evaluation of treatment and disinfection of water using cold atmospheric plasma. J Water Health. 2016;14(4):609–16.PubMedCrossRefGoogle Scholar
  215. 215.
    Tian Y, Ma RN, Zhang Q, Feng HQ, Liang YD, Zhang J, Fang J. Assessment of the physicochemical properties and biological effects of water activated by non-thermal plasma above beneath the water surface. Plasma Process Polym. 2015;12:439–49.CrossRefGoogle Scholar
  216. 216.
    Zhou RW, Zhou RS, Zhuang JX, Zong ZC, Zhang XH, Liu DP, Bazaka K, Ostrikov K. Interaction of atmospheric-pressure air microplasmas with amino acids as fundamental processes in aqueous solution. PLoS One. 2016;11:e0155584.PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Brisset JL, Fanmoe J, Hnatiuc E. Degradation of surfactant by cold plasma treatment. J Environml Chem Eng. 2016;4:385–7.CrossRefGoogle Scholar
  218. 218.
    Malik MA, Ghaffar A, Malik SA. Water purification by electrical discharges. Plasma Sources Sci Technol. 2001;10:82–91.CrossRefGoogle Scholar
  219. 219.
    Okumura T, Saito Y, Takano K, Takahashi K, Takaki K, Satta N, Fujio T. Inactivation of bacteria using discharge plasma under liquid fertilizer in a hydroponic culture system. Plasma Med. 2016;6(3–4):247–54.CrossRefGoogle Scholar
  220. 220.
    El-Sayed WS, Ouf SA, Mohamed AAH. Deterioration to extinction of wastewater bacteria by non-thermal atmospheric pressure air plasma as assessed by 16S rDNA-DGGE fingerprinting. Front Microbiol. 2015;6:1098.PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Arnó J, Bevan JW. Detoxification of trichloroethylene in a low-pressure surface wave plasma reactor. Environ Sci Technol. 1996;30(8):2427–31.CrossRefGoogle Scholar
  222. 222.
    Attri P, Yusupov M, Park JH, Lingamdinne LP, Koduru JR, Shiratani M, Choi EH, Bogaerts A. Mechanism and comparison of needle-type non-thermal direct and indirect atmospheric pressure plasma jets on the degradation of dyes. Sci Rep. 2016;6:34419.PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Vanraes P, Ghodbane H, Davister D, Wardenier N, Nikiforov A, Verheust YP, Van Hulle SWH, Hamdaoui O, Vandamme J, Dume JV, Surmont P. Removal of several pesticides in a falling water film DBD reactor with activated carbon textile: energy efficiency. Water Res. 2017;116:1–12.PubMedCrossRefGoogle Scholar
  224. 224.
    Lai ACK, Cheung ACT, Wong MML, Li WS. Evaluation of cold plasma inactivation efficacy against different airborne bacteria in ventilation duct flow. Build Environ. 2016;98:39–46.CrossRefGoogle Scholar
  225. 225.
    Zhou P, Yang Y, Lai ACK, Huang GS. Inactivation of airborne bacteria by cold plasma in air duct flow. Build Environ. 2016;106:120–30.CrossRefGoogle Scholar
  226. 226.
    Alva E, Pacheco M, Colin A, Sanchez V, Pacheco J, Valdivia R, Soria G. Nitrogen oxides and methane treatment by non-thermal plasma. J Phys Conf Ser. 2015;591(1):012052.CrossRefGoogle Scholar
  227. 227.
    Karatrum O, Deshusses MA. A comparative study of dilute VOCs treatment in a non-thermal plasma reactor. Chem Eng J. 2016;294:308–15.CrossRefGoogle Scholar
  228. 228.
    Machado MM, Machado MM, Dutra ARD, Moecke EHS, Cubas ALV. Construction of a corona discharge plasma reactor for elimination of volatile organic compounds. Quim Nova. 2015;38:128–31.Google Scholar
  229. 229.
    Veerapandian SKP, Leys C, De Geyter N Morent R. Abatement of VOCs using packed bed non-thermal plasma reactors: a review. Catalysts. 2017;7:113.CrossRefGoogle Scholar
  230. 230.
    Ye SY, Liang JL, Song XL, Luo SC, Liang JY. Modelling intrinsic kinetics in a rector of corona discharge coupled with TiO2-activated carbon fibre for ethylene degradation and ozone regulation. Biosyst Eng. 2016;150:123–30.CrossRefGoogle Scholar
  231. 231.
    Assadi AA, Bouzaza A, Wolbert D. Comparative study between laboratory and large pilot scales for VOC’s removal from gas streams in continuous flow surface discharge plasma. Chem Eng Res Design. 2016;106:308–14.CrossRefGoogle Scholar
  232. 232.
    Blumberg A, Blumberg D, Pubule J, Romagnoli F. Cost-benefit analysis of plasma-based technologies. Energy Pro. 2015;72:170–4.CrossRefGoogle Scholar
  233. 233.
    Dam TN, Dung DV. Treatment exhaust gas from engine by plasma at atmospheric pressure. Proc 3rd Int Conf on green technology and Sustainable Development 2016; 228–31.Google Scholar
  234. 234.
    Harling AM, Demidyuk V, Fischer SJ, Whitehead JC. Plasma-catalysis destruction of aromatics for environmental clean-up: effect of temperature and configuration. Appl Catal B Environ. 2008;82:180–9.CrossRefGoogle Scholar
  235. 235.
    Huang JY, Dang XQ, Qin CH, Shu Y, Wang HC, Zhang F. Toluene decomposition using adsorption combined with plasma-driven catalysis with gas circulation. Environ Prog Sustain Energy. 2016;35:386–94.CrossRefGoogle Scholar
  236. 236.
    Jiang LY, Li H, Chen JM, Zhang D, Cao SL, Ye JX. Combination of non-thermal plasma and biotricking filter for chlorobenzene removal. J Chem Technol Biotechnol. 2016;91:3079–87.CrossRefGoogle Scholar
  237. 237.
    Nguyen DB, Lee WG. Effects of ambient gas on cold atmospheric plasma discharge in the decomposition of trifluoromethane. RSC Adv. 2016;6:26505–13.CrossRefGoogle Scholar
  238. 238.
    Schiavon M, Schiorlin M, Torretta V, Brandenburg R, Ragazzi M. Non-thermal plasma assisting the biofiltration of volatile organic compounds. J Clean Prod. 2017;148:498–508.CrossRefGoogle Scholar
  239. 239.
    Stasiulaitiene I, Martuzevicius D, Abromaitis V, Tichonovas M, Baltrusaitis J, Brandenburg R, Pawelec A, Schwock A. Comparative life cycle assessment of plasma-based and traditional exhaust gas treatment technologies. J Clean Prod. 2016;112:1804–12.CrossRefGoogle Scholar
  240. 240.
    Bussler S, Steins V, Ehlbeck J, Schlueter O. Impact of thermal treatment versus cold atmospheric plasma processing on the techno-functional protein properties from Pisum Sativum “Salamanca”. J Food Eng. 2015;167:166–74.CrossRefGoogle Scholar
  241. 241.
    Park JH, Kim M, Shiratani M, Cho AE, Choi EH, Attri P. Variation in structure of proteins by adjusting reactive oxygen and nitrogen species generated from dielectric barrier discharge jet. Sci Rep. 2016;6:35883.PubMedPubMedCentralCrossRefGoogle Scholar
  242. 242.
    Choi S, Attri P, Lee I, Oh J, Yun JH, Park JH, Choi EH, Lee W. Structural and functional analysis of lysozyme after treatment with dielectric barrier discharge plasma and atmospheric pressure plasma jet. Sci Rep. 2017;7(1):1027.PubMedPubMedCentralCrossRefGoogle Scholar
  243. 243.
    Kousal J, Shelemin A, Kylioan O, Slavinska D, Biederman H. In-situ monitoring of etching of bovine serum albumin using low-temperature atmospheric plasma jet. Appl Surf Sci. 2017;392:1049–54.CrossRefGoogle Scholar
  244. 244.
    Recek N, Primc G, Vesel A, Mozetic M, Avila J, Razado-Colambo I, Asensio MC. Degradation of albumin on plasma-treated polystyrene by soft X-ray exposure. Polymers. 2016;8:244.CrossRefGoogle Scholar
  245. 245.
    Zhang H, ZM X, Shen J, Li X, Ding LL, Ma J, Lan Y, Xia WD, Cheng C, Sun Q, Zhang Z, Chu PK. Effects and mechanism of atmospheric-pressure dielectric barrier discharge cold plasma on lactate dehydrogenase (LDH) enzyme. Sci Rep. 2015;5:10031.PubMedPubMedCentralCrossRefGoogle Scholar
  246. 246.
    Arfaoui M, Behary N, Mutel B, Perwuelz A, Belhacene K, Dhulster P, Mamede AS, Froidevaux R. Activity of enzymes immobilized on plasma treated polyester. J Mol Catal B Enzym. 2016;134:261–72.CrossRefGoogle Scholar
  247. 247.
    Liu CJ, Li MY, Wang JQ, Zhou XT, Guo QT, Yan JM, Li YZ. Plasma methods for preparing green catalysts: Current status and perspective. Chin J Catal. 2016;37:340–8.CrossRefGoogle Scholar
  248. 248.
    Pan YX, Cong HP, Men YL, Xin S, Sun ZQ, Liu CJ, Yu SH. Peptide self-assembled biofilm with unique electron transfer flexibility for highly efficient visible-light-driven photocatalysis. ACS Nano. 2015;9:11258–65.PubMedCrossRefGoogle Scholar
  249. 249.
    Bussler S, Herppich WB, Neugart S, Schreiner M, Ehlbeck J, Rohn S, Schlueter O. Impact of cold atmospheric pressure plasma on physiology and flavonol glycoside profile of peas (Pisum sativum “Salamanca”). Food Res Int. 2015;76:132–41.CrossRefGoogle Scholar
  250. 250.
    Zhang JJ, Jo JO, Huynh DL, Mongre RK, Ghosh M, Singh AK, Lee SB, Mok YS, Hyuk P, Jeong DK. Growth-inducing effects of argon plasma on soybean sprouts via the regulation of demethylation levels of energy metabolism-related genes. Sci Rep. 2017;7:41917.PubMedPubMedCentralCrossRefGoogle Scholar
  251. 251.
    Yan DY, Xiao HJ, Zhu W, Nourmohammadi N, Zhang LG, Bian K, Keidar M. The role of aquaporins in the anti-glioblastoma capacity of the cold plasma-stimulated medium. J Phys D Appl Phys. 2017;50:055401.CrossRefGoogle Scholar
  252. 252.
    Bartis EAJ, Luan PS, Knoll AJ, Graves DB, Seong J, Oehrlein GS. A comparative study of biomolecule and polymer surface modifications by a surface microdischarge. Eur Phys J D. 2016;70(25):1–19.Google Scholar
  253. 253.
    Stoleru E, Dumitriu RP, Munteanu BS, Zaharescu T, Tanase EE, Mitelut A, Ailiesei GL, Vasile C. Novel procedure to enhance PLA surface properties by chitosan irreversible immobilization. Appl Surf Sci. 2016;367:407–17.CrossRefGoogle Scholar
  254. 254.
    Bastekova K, Guselnikova O, Postnikov P, Elashnikov R, Kunes M, Kolska Z, Svorcik V, Lyutakov O. Spatially selective modification of PLA surface: from hydrophobic to hydrophilic or to repellent. Appl Surf Sci. 2017;397:226–34.CrossRefGoogle Scholar
  255. 255.
    Stoleru E, Zaharaescu T, Hitruc EG, Vese A, Ioanid EG, Coroaba A, Safrany A, Pricope G, Lungu M, Schick C, Vasile C. Lactoferrin-immobilized surfaces onto functionalized PLA assisted by the gamma-rays and nitrogen plasma to create materials with multifunctional properties. ACS Appl Mater Interfaces. 2016;8:31902–15.PubMedCrossRefGoogle Scholar
  256. 256.
    Pankaj SK, Bueno-Ferrer C, O’Neill L, Tiwari BK, Bourke P, Cullen PJ. Characterization of dielectric barrier discharge atmospheric air plasma treated chitosan films. J Food Process Preserv. 2017;41:e12889.CrossRefGoogle Scholar
  257. 257.
    Irimia A, Ioanid GE, Zaharescu T, Coroaba A, Doroftei F, Safrany A, Vasile C. Comparative study on gamma irradiation and cold plasma pretreatment for a cellulosic substrate modification with phenolic compounds. Radiat Phys Chem. 2017;130:52–61.CrossRefGoogle Scholar
  258. 258.
    Memon H, Kumari N. Study of multifunctional nanocoated cold plasma treated polyester cotton blended curtains. Surf Rev Lett. 2016;23:1650036.CrossRefGoogle Scholar
  259. 259.
    Primc G, Tomasic B, Vesel A, Mozetic M, Razic SE, Gorjanc M. Biodegradability of oxygen-plasma treated cellulose textile functionalized with ZnO nanoparticles as antibacterial treatment. J Phys D Appl Phys. 2016;49:324002.CrossRefGoogle Scholar
  260. 260.
    Sousa S, Gaiolas C, Costa AP, Baptista C, Amaral ME. Cold plasma treatment of cotton and viscose fabrics impregnated with essential oils of Lavandula angustifolia and Melaleuca alternifolia. Cellul Chem Technol. 2016;50:711–9.Google Scholar
  261. 261.
    Karam L, Casetta M, Chihib NE, Bentiss F, Maschke U, Jama C. Optimization of cold nitrogen plasma surface modification process for setting up antimicrobial low density polyethylene films. J Taiwan Inst Chem Eng. 2016;64:299–305.CrossRefGoogle Scholar
  262. 262.
    Pan H, Wang GM, Pan J, Ye GP, Sun K, Zhang J, Wang J. Cold plasma-induced surface modification of heat-polymerized acrylic resin and prevention of early adherence of Candida albicans. Dent Mater J. 2015;34:529–36.PubMedCrossRefGoogle Scholar
  263. 263.
    Qian K, Pan H, Li YL, Wang GM, Zhang J, Pan J. Time-related surface modification of denture base acrylic resin treated by atmospheric pressure cold plasma. Dent Mater J. 2016;35:97–103.PubMedCrossRefGoogle Scholar
  264. 264.
    Kredl J, Kolb JF, Schnabel U, Polak M, Weltmann KD, Fricke K. Deposition of antimicrobial copper-rich coatings on polymers by atmospheric pressure jet plasmas. Materials (Basel). 2016;9:274.CrossRefGoogle Scholar
  265. 265.
    Ibis F, Oflaz H, Ercan UK. Biofilm inactivation and prevention on common implant material surfaces by nonthermal dbd plasma treatment. Plasma Med. 2016;6(1):33–45.CrossRefGoogle Scholar
  266. 266.
    Guastaldi FPS, Yoo D, Marin C, Jimbo R, Tovar N, Zanetta-Barbosa D, Coelho PG. Plasma treatment maintains surface energy of the implant surface and enhances osseointegration. Int J Biomaterials. 2013:354125.Google Scholar
  267. 267.
    Rezaei F, Shokri B, Sharifian M. Atmospheric-pressure DBD plasma-assisted surface modification of polymethyl methacrylate: a study on cell growth/proliferation and antibacterial properties. Appl Surf Sci. 2016;360:641–51.CrossRefGoogle Scholar
  268. 268.
    Joslin JM, McCall JR, Bzdek JP, Johnson DC, Hybertson BM. Aqueous plasma pharmacy: preparation methods, chemistry, and therapeutic applications. Plasma Med. 2016;6(2):135–77.PubMedPubMedCentralCrossRefGoogle Scholar
  269. 269.
    Treshchalov A, Tsarenko S, Avarmaa T, Saar R, Lohmus A, Vanetsev A, Ilmo Sildos I. He/H2 pulsed-discharge plasma as a tool for synthesis of surfactant-free colloidal silver nanoparticles in water. Plasma Med. 2016;6(1):85–100.CrossRefGoogle Scholar
  270. 270.
    Ingels R, Graves DB. Improving the efficiency of organic fertilizer and nitrogen use via air plasma and distributed renewable energy. Plasma Med. 2015;5(2–4):257–70.CrossRefGoogle Scholar
  271. 271.
    Pierdzioch P, Hartwig S, Herbst SR, Raguse JD, Dommisch H, Abu-Sirhan S, Wirtz HC, Hertel M, Paris S, Preissner S. Cold plasma: a novel approach to treat infected dentin—a combined ex vivo and in vitro study. Clin Oral Investig. 2016;20:2429–35.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Axel Kramer
    • 1
    Email author
  • Frieder Schauer
    • 2
  • Roald Papke
    • 1
  • Sander Bekeschus
    • 3
  1. 1.Institute of Hygiene and Environmental MedicineUniversity Medicine GreifswaldGreifswaldGermany
  2. 2.Department of Applied MicrobiologyErnst-Moritz-Arndt University of GreifswaldGreifswaldGermany
  3. 3.Leibniz-Institute for Plasma Science and Technology (INP Greifswald)GreifswaldGermany

Personalised recommendations