Advertisement

Understanding How Learning Takes Place with Neuroscience and Applying the Results to Education

  • Andreas A. Ioannides
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10512)

Abstract

Human learning has been dramatically altered by the new situation that saw us climb down trees and out of the savanna to larger communities with great reliance on agriculture and more recently industry. Psychology appeared as a scientific discipline at a time that formal education for all was becoming accepted. From the very beginning psychology and education had a major influence on each other. Education is notoriously slow to change. As the ideas of developmental psychologists started influencing education policy, new paradigms for education emerge from a variety of disciplines including computer science, medicine and particularly neurosciences. Each of these disciplines has its own vocabulary and progress is often limited because there is no common framework to bring together specialists from different disciplines or to formulate common research. We provide such a framework through a generalization of key concepts of developmental psychology. In the new framework, these concepts are cloaked with what we might call the standard model of modern neuroscience. Here, we customize this framework for learning and education. Formal education is seen a continuation of a process that begins with the mother and develops in pre-school play. The main goal of this process is to maintain and continually update an internal representation of the external world in the key brain networks while keeping intact the core representation of self. The first steps in a research program using this new framework are described with some results and conclusions about future actions.

Keywords

Neural representation of self Self-evolution and education Midline self-representation core Core sleep states (MSRC) Assimilation Accommodation Zone of proximal development (ZPD) Mass screening of pupils 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Llinas, R.R.: I of the Vortex: From Neurons to Self. MIT press (2001)Google Scholar
  2. 2.
    Delafield-Butt, J.T., Trevarthen, C.: The ontogenesis of narrative: from moving to meaning. Front. Psychol. 6, 1157 (2015). doi: 10.3389/fpsyg.2015.01157 CrossRefGoogle Scholar
  3. 3.
    Merker, B.: The vocal learning constellation. In: Music, Language, and Human Evolution (2012)Google Scholar
  4. 4.
    Elias, J.L., Merriam, S.B.: Philosophical foundations of adult education. Krieger Pub. Co, Melbourne (1995)Google Scholar
  5. 5.
    Thorndike, E.L.: The contribution of psychology to education. Educ. Psychol. 1, 5–12 (1910)CrossRefGoogle Scholar
  6. 6.
    Pascual-Leone, J.: A mathematical model for the transition rule in Piaget’s developmental stages. Acta Psychol. (Amst) 32, 301–345 (1970). doi: 10.1016/0001-6918(70)90108-3 CrossRefGoogle Scholar
  7. 7.
    Case, R., Okamoto, Y., Griffin, S., Mckeough, A., Bleiker, C., Henderson, B., Stephenson, K.M., Siegler, R.S., Keating, D.P.: the Role of Central Conceptual Structures in the Development of Children’S Thought. Monogr. Soc. Res. Child Dev. 61, 1–295 (1996)CrossRefGoogle Scholar
  8. 8.
    Ferrari, M., McBride, H.: Mind, brain and education: The birth of a new science. Learn. Landscapes. 5, 85–100 (2011)Google Scholar
  9. 9.
    Ioannides, A.Α., Liu, L., Poghosyan, V., Kostopoulos, G.K.: Using MEG to Understand the Progression of Light Sleep and the Emergence and functional Roles of Spindles and K-complexes. Front. Hum. Neurosci. 11, 1–24 (2017). doi: 10.3389/fnhum.2017.00313 CrossRefGoogle Scholar
  10. 10.
    Fischer, K.: A theory of cognitive development. Psychol. Rev. 87, 477–531 (1980). doi: 10.1037/018662 CrossRefGoogle Scholar
  11. 11.
    Stein, Z., Fischer, K.W.: Directions for Mind, Brain, and Education: Methods, Models, and Morality. Educ. Philos. Theory. 43, 56–66 (2011). doi: 10.1111/j.1469-5812.2010.00708.x CrossRefGoogle Scholar
  12. 12.
    Arsalidou, M., Pascual-leone, J.: Constructivist developmental theory is needed in developmental neuroscience. Nat. Partn. Journals, Sci. Learn. 1, 1–9 (2016). doi: 10.1038/npjscilearn.2016.16
  13. 13.
    Prensky, M.: Digital Game-Based Learning. McGraw Hill, New York (2001)Google Scholar
  14. 14.
    Conati, C., MacLaren, H.: Empirically building and evaluating a probabilistic model of user affect. User Model. User-adapt. Interact. 19, 267–303 (2009). doi: 10.1007/s11257-009-9062-8 CrossRefGoogle Scholar
  15. 15.
    Derbali, L., Chalfoun, P., Frasson, C.: A theoretical and empirical approach in assessing motivational factors: from serious games to an ITS. In: Proceedings of the Twenty-Fourth International Florida Artificial Intelligence Research Society Conference, pp. 513–518. Association for the Advancement of Artificial Intelligence (2011)Google Scholar
  16. 16.
    Bandettini, P.A.: What’s new in neuroimaging methods? Ann. N. Y. Acad. Sci. 14, 260–293 (2009). doi: 10.1111/j.1749-6632.2009.04420.x.What CrossRefGoogle Scholar
  17. 17.
    Satterthwaitea, T.D., Elliottb, M.A., Ruparela, K., Lougheada, J., Prabhakarana, K., Calkinsa, M.E., Hopsona, R., Jacksona, C., Keefea, J., Rileya, M., Menshc, F.D., Sleimanc, P., Vermab, R., Davatzikos, C., Hakonarsonc, H., Gura, R.C., Gur, R.E.: Neuroimaging of the Philadelphia Neurodevelopmental Cohort. Neuroimage 86, 544–553 (2008). doi: 10.1016/j.neuroimage.2013.07.064 CrossRefGoogle Scholar
  18. 18.
    Schumann, G., Loth, E., Banaschewski, T., Barbot, A., Barker, G., Büchel, C., Conrod, P.J., Dalley, J.W., Flor, H., Gallinat, J., Garavan, H., Heinz, A., Itterman, B., Lathrop, M., Mallik, C., Mann, K., Martinot, J.-L., Paus, T., Poline, J.-B., Robbins, T.W., Rietschel, M., Reed, L., Smolka, M., Spanagel, R., Speiser, C., Stephens, D.N., Ströhle, A., Struve, M.: The IMAGEN study: reinforcement-related behaviour in normal brain function and psychopathology. Mol. Psychiat. 15, 1128–1139 (2010)CrossRefGoogle Scholar
  19. 19.
    Brown, T.T., Kuperman, J.M., Chung, Y., Erhart, M., Mccabe, C., Hagler, D.J., Venkatraman, V.K., Akshoomoff, N., Amaral, D.G., Bloss, C.S., Casey, B.J., Chang, L., Ernst, T.M., Frazier, J.A., Gruen, J.R.: Report Neuroanatomical Assessment of Biological Maturity. Curr. Biol. 22, 1693–1698 (2012). doi: 10.1016/j.cub.2012.07.002.Neuroanatomical CrossRefGoogle Scholar
  20. 20.
    Zilles, K., Schleicher, A., Palomero-Gallagher, N., Amunts, K.: Quantitative analysis of cyto- and receptor architecture of the human brain. In: Toga, A.W., Mazziotta, J.C. (eds.) Brain Mapping: The Methods, pp. 573–602 (2002)Google Scholar
  21. 21.
    Caspers, S., Eickhoff, S.B., Zilles, K., Amunts, K.: Combining cytoarchitectonic atlas information with diffusion tensor imaging – detailed mapping of transcallosal fibres of the inferior parietal lobule. Front. Neuroinform. (2013). doi: 10.3389/conf.fninf.2013.10.00035 Google Scholar
  22. 22.
    Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 52, 1059–1069 (2010). doi: 10.1016/j.neuroimage.2009.10.003 CrossRefGoogle Scholar
  23. 23.
    Ioannides, A.A., Fenwick, P.B.C., Liu, L.: Widely distributed magnetoencephalography spikes related to the planning and execution of human saccades. J. Neurosci. 25, 7950–7967 (2005). doi: 10.1523/JNEUROSCI.1091-05.2005 CrossRefGoogle Scholar
  24. 24.
    Liu, L., Ioannides, A.A.: Emotion separation is completed early and it depends on visual field presentation. PLoS One 5, e9790 (2010). doi: 10.1371/journal.pone.0009790 CrossRefGoogle Scholar
  25. 25.
    Friston, K.J.: Functional and Effective Connectivity: A Review. Brain Connect. 1, 13–36 (2011). doi: 10.1089/brain.2011.0008 CrossRefGoogle Scholar
  26. 26.
    Ioannides, A.A.: Dynamic functional connectivity. Curr Opin Neurobiol. 17, 161–170 (2007). doi: 10.1016/j.conb.2007.03.008 CrossRefGoogle Scholar
  27. 27.
    Damoiseaux, J.S., Rombouts, S.A.R.B., Barkhof, F., Scheltens, P., Stam, C.J., Smith, S.M., Beckmann, C.F.: Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. 103, 13848–13853 (2006). doi: 10.1073/pnas.0601417103 CrossRefGoogle Scholar
  28. 28.
    Greicius, M.D., Krasnow, B., Reiss, A.L., Menon, V.: Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. 100, 253–258 (2003)CrossRefGoogle Scholar
  29. 29.
    Watanabe, T., Kan, S., Koike, T., Misaki, M., Konishi, S., Miyauchi, S., Miyahsita, Y., Masuda, N.: Network-dependent modulation of brain activity during sleep. Neuroimage 98, 1–10 (2014). doi: 10.1016/j.neuroimage.2014.04.079 CrossRefGoogle Scholar
  30. 30.
    Horovitz, S.G., Braun, A.R., Carr, W.S., Picchioni, D., Balkin, T.J., Fukunaga, M., Duyn, J.H.: Decoupling of the brain’s default mode network during deep sleep. In: Proc. Nat. Acad. Sci., USA, vol. 106, pp. 11376–11381 (2009). doi: 10.1073/pnas.0901435106
  31. 31.
    de Haan, W., Pijnenburg, Y.A.L., Strijers, R.L., van der Made, Y., van der Flier, W.M., Scheltens, P., Stam, C.J.: Functional neural network analysis in frontotemporal dementia and Alzheimer’s disease using EEG and graph theory. BMC Neurosci. 10, 101 (2009). doi: 10.1186/1471-2202-10-101 CrossRefGoogle Scholar
  32. 32.
    Stam, C.J.: Modern network science of neurological disorders. Nat. Rev. Neurosci. 15, 683–695 (2014). doi: 10.1038/nrn3801 CrossRefGoogle Scholar
  33. 33.
    Dimitriadis, S.I., Laskaris, N.A., Simos, P.G., Micheloyannis, S., Fletcher, J.M., Rezaie, R., Papanicolaou, A.C.: Altered temporal correlations in resting-state connectivity fluctuations in children with reading difficulties detected via MEG. Neuroimage 83, 307–317 (2013). doi: 10.1016/j.neuroimage.2013.06.036 CrossRefGoogle Scholar
  34. 34.
    Ioannides, A.A., Dimitriadis, S.I., Saridis, G.A., Voultsidou, M., Poghosyan, V., Liu, L., Laskaris, N.A.: Source space analysis of event-related dynamic reorganization of brain networks. Comput. Math. Methods Med. 2012, 452503 (2012). doi: 10.1155/2012/452503 MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Uddin, L.Q., Kelly, A.M., Biswal, B.B., Castellanos, F.X., Milham, M.P.: Functional connectivity of default mode network components: correlation, anticorrelation, and causality. Hum. Brain Mapp. 30, 625–637 (2009). doi: 10.1002/hbm.20531 CrossRefGoogle Scholar
  36. 36.
    Murphy, K., Birna, R.M., Handwerkera, D.A., Jones, T.B., Bandettini, P.A.: The impact of global signal regression on resting state correlations: Are anti-correlated networks introduced? Neuroimage 44, 893–905 (2009). doi: 10.1016/j.neuroimage.2008.09.036 CrossRefGoogle Scholar
  37. 37.
    Ioannides, A.A., Kostopoulos, G.K., Liu, L., Fenwick, P.B.C.: MEG identifies dorsal medial brain activations during sleep. Neuroimage 44, 455–468 (2009). doi: 10.1016/j.neuroimage.2008.09.030 CrossRefGoogle Scholar
  38. 38.
    Uddin, L.Q., Iacoboni, M., Lange, C., Keenan, J.P.: The self and social cognition: the role of cortical midline structures and mirror neurons. Trends Cogn. Sci. 11, 153–157 (2007). doi: 10.1016/j.tics.2007.01.001 CrossRefGoogle Scholar
  39. 39.
    Menon, V.: Salience network introduction and overview. In: Toga, A.W. (ed.) Brain Mapping: An Encyclopedic Reference, pp. 597–611. Elevier (2015)Google Scholar
  40. 40.
    Seeley, W.W., Menon, V., Schatzberg, A.F., Keller, J., Glover, G.H., Kenna, H., Reiss, A.L., Greicius, M.D.: Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control 27, 2349–56 (2007). doi: 10.1523/JNEUROSCI.5587-06.2007
  41. 41.
    Menon, V.: Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn. Sci. 15, 483–506 (2011). doi: 10.1016/j.tics.2011.08.003 CrossRefGoogle Scholar
  42. 42.
    Terzano, M.G., Parrino, L., Sherieri, A., Chervin, R., Chokroverty, S., Guilleminault, C., Hirshkowitz, M., Mahowald, M., Moldofsky, H., Rosa, A., Thomas, R., Walters, A.: Atlas, rules, and recording techniques for the scoring of cyclic alternating pattern (CAP) in human sleep. Sleep Med. 2, 537–553 (2001)CrossRefGoogle Scholar
  43. 43.
    Wehrle, R., Kaufmann, C., Wetter, T.C., Holsboer, F., Auer, D.P., Pollmächer, T., Czisch, M.: Functional microstates within human REM sleep: first evidence from fMRI of a thalamocortical network specific for phasic REM periods. Eur. J. Neurosci. 25, 863–871 (2007). doi: 10.1111/j.1460-9568.2007.05314.x CrossRefGoogle Scholar
  44. 44.
    Rosanova, M., Ulrich, D.: Pattern-specific associative long-term potentiation induced by a sleep spindle-related spike train. J. Neurosci. 25, 9398–9405 (2005). doi: 10.1523/JNEUROSCI.2149-05.2005 CrossRefGoogle Scholar
  45. 45.
    Ciani, O., Federici, C., Tarricone, R., Bezerianos, A.: Current and Future Trends in the HTA of Medical Devices. Presented at the (2016)Google Scholar
  46. 46.
    Trevarthen, C.: Communication and cooperation in early infancy: a description of primary intersubjectivity. In: Bullowa, M. (ed.) Before Speech: The Beginning of Interpersonal Communication, pp. 321–348. Google Books (1979)Google Scholar
  47. 47.
    Insel, T., Cuthbert, B., Garvie, M., Heinssen, R., Pine, D.S., Quinn, K., Sanislow, C., Wang, P.: Research Domain Criteria (RDoC): Toward a New Classification Framework for Research on Mental Disorders. Am. J. Psychiatry. 167, 748–751 (2010). doi: 10.1176/appi.ajp.2010.09091379 CrossRefGoogle Scholar
  48. 48.
    Becker, C., Elliott, M.A., Lachmann, T.: Evidence for impaired visuoperceptual organisation in developmental dyslexics and its relation to temporal processes. Cogn. Neuropsychol. 22, 499–522 (2005). doi: 10.1080/02643290442000086 CrossRefGoogle Scholar
  49. 49.
    Facoetti, A., Zorzi, M., Cestnick, L., Lorusso, M.L., Molteni, M., Paganoni, P., Umiltà, C., Mascetti, G.G.: The relationship between visuo-spatial attention and nonword reading in developmental dyslexia. Cogn. Neuropsychol. 23, 841–855 (2006). doi: 10.1080/02643290500483090 CrossRefGoogle Scholar
  50. 50.
    Abu Bakar, A., Liu, L., Conci, M., Elliott, M.A., Ioannides, A.A.: Visual field and task influence illusory figure responses. Hum. Brain Mapp. 29, 1313–1326 (2008). doi: 10.1002/hbm.20464 CrossRefGoogle Scholar
  51. 51.
    Poghosyan, V., Ioannides, A.Α.: Attention modulates earliest responses in the primary auditory and visual cortices. Neuron. 58, 802–813 (2008). doi: 10.1016/j.neuron.2008.04.013 CrossRefGoogle Scholar
  52. 52.
    Ioannides, A.Α., Poghosyan, V.: Spatiotemporal dynamics of early spatial and category-specific attentional modulations. Neuroimage 60, 1638–1651 (2012). doi: 10.1016/j.neuroimage.2012.01.121 CrossRefGoogle Scholar
  53. 53.
    Liu, L., Ioannides, A.A.: Spatiotemporal dynamics and connectivity pattern differences between centrally and peripherally presented faces. Neuroimage 31, 1726–1740 (2006). doi: 10.1016/j.neuroimage.2006.02.009 CrossRefGoogle Scholar
  54. 54.
    Plomp, G., van Leeuwen, C., Ioannides, A.A.: Functional specialization and dynamic resource allocation in visual cortex. Hum. Brain Mapp. 31, 1–13 (2010). doi: 10.1002/hbm.20840 CrossRefGoogle Scholar
  55. 55.
    Ioannides, A.A., Papageorgiou, G.: Effective and Affordable ways of capturing reaction time and EEG to dedicated stimuli using stand-alone devices. In: Frontiers in Human Neuroscience (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Laboratory for Human Brain DynamicsAAI Scientific Cultural Services Ltd.NicosiaCyprus

Personalised recommendations