Advertisement

Roles of the Translationally Controlled Tumor Protein (TCTP) in Plant Development

  • Léo Betsch
  • Julie Savarin
  • Mohammed BendahmaneEmail author
  • Judit SzecsiEmail author
Chapter
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 64)

Abstract

The Translationally Controlled Tumor Protein (TCTP) is a conserved protein which expression was associated with several biochemical and cellular functions. Loss-of-function mutants are lethal both in animals and in plants, making the identification of its exact role difficult. Recent data using the model plant Arabidopsis thaliana provided the first viable adult knockout for TCTP and helped addressing the biological role of TCTP during organ development and the functional conservation between plants and animals. This chapter summarizes our up to date knowledge about the role of TCTP in plants and discuss about conserved functions and mechanisms between plants and animals.

Notes

Acknowledgements

This work was funded by the “Biologie et Amélioration des Plantes” Department of the French “Institut National de la Recherche Agronomique”, by The “Ecole Normale Supérieure de Lyon”, by the Claude Bernard University at Lyon (UCBL), and by the CIFRE program of the ANRT.

References

  1. Abe H et al (2008) Function of jasmonate in response and tolerance of Arabidopsis to thrip feeding. Plant Cell Physiol 49:68–80PubMedCrossRefGoogle Scholar
  2. Acunzo J, Baylot V, So A, Rocchi P (2014) TCTP as therapeutic target in cancers. Cancer Treat Rev 40:760–769PubMedCrossRefGoogle Scholar
  3. Ahn CS, Han J-A, Lee H-S, Lee S, Pai H-S (2011) The PP2A regulatory subunit Tap46, a component of the TOR signaling pathway, modulates growth and metabolism in plants. Plant Cell 23:185–209PubMedPubMedCentralCrossRefGoogle Scholar
  4. Alfenas-Zerbini P et al (2009) Genome-wide analysis of differentially expressed genes during the early stages of tomato infection by a potyvirus. Mol Plant-Microbe Interact 22:352–361PubMedCrossRefGoogle Scholar
  5. Amson R et al (2012) Reciprocal repression between P53 and TCTP. Nat Med 18:91–99CrossRefGoogle Scholar
  6. Amzallag N et al (2004) TSAP6 facilitates the secretion of translationally controlled tumor protein/histamine-releasing factor via a nonclassical pathway. J Biol Chem 279:46104–46112PubMedCrossRefGoogle Scholar
  7. Anastasiou E, Lenhard M (2007) Growing up to one’s standard. Curr Opin Plant Biol 10:63–69PubMedCrossRefGoogle Scholar
  8. Aoki K et al (2005) Destination-selective long-distance movement of phloem proteins. Plant Cell 17:1801–1814PubMedPubMedCentralCrossRefGoogle Scholar
  9. Arya R, White K (2015) Cell death in development: signaling pathways and core mechanisms. Semin Cell Dev Biol 39:12–19PubMedPubMedCentralCrossRefGoogle Scholar
  10. Barel G, Ginzberg I (2008) Potato skin proteome is enriched with plant defence components. J Exp Bot 59:3347–3357PubMedPubMedCentralCrossRefGoogle Scholar
  11. Barnes A et al (2004) Determining protein identity from sieve element sap in Ricinus communis L. by quadrupole time of flight (Q-TOF) mass spectrometry. J Exp Bot 55:1473–1481PubMedCrossRefGoogle Scholar
  12. Barreau C, Paillard L, Osborne HB (2005) AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res 33:7138–7150PubMedCrossRefGoogle Scholar
  13. Bellafiore S et al (2008) Direct identification of the Meloidogyne incognita secretome reveals proteins with host cell reprogramming potential. PLoS Pathog 4:e1000192PubMedPubMedCentralCrossRefGoogle Scholar
  14. Berkowitz O, Jost R, Pollmann S, Masle J (2008) Characterization of TCTP, the translationally controlled tumor protein, from Arabidopsis thaliana. Plant Cell Online 20:3430–3447CrossRefGoogle Scholar
  15. Biasini M et al (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bögre L, Magyar Z, López-Juez E (2008) New clues to organ size control in plants. Genome Biol 9:226PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bommer UA (2012) Cellular function and regulation of the translationally controlled tumour protein TCTP. Open Allergy J 5:19–32CrossRefGoogle Scholar
  18. Bommer UA, Thiele BJ (2004) The translationally controlled tumour protein (TCTP). Int J Biochem Cell Biol 36:379–385PubMedCrossRefGoogle Scholar
  19. Bommer UA et al (2002) The mRNA of the translationally controlled tumor protein P23/TCTP is a highly structured RNA, which activates the dsRNA-dependent protein kinase PKR. RNA 8:478–496PubMedPubMedCentralCrossRefGoogle Scholar
  20. Brioudes F, Thierry A-M, Chambrier P, Mollereau B, Bendahmane M (2010) Translationally controlled tumor protein is a conserved mitotic growth integrator in animals and plants. Proc Natl Acad Sci 107:16384–16389PubMedPubMedCentralCrossRefGoogle Scholar
  21. Browse J (2005) Jasmonate: an oxylipin signal with many roles in plants. Vitam Horm 72:431–456PubMedCrossRefGoogle Scholar
  22. Bruckner FP et al (2017) Translationally controlled tumour protein (TCTP) from tomato and Nicotiana benthamiana is necessary for successful infection by a potyvirus: TCTP is a host factor for potyvirus infection. Mol Plant Pathol 18:672–683PubMedCrossRefGoogle Scholar
  23. Busov VB, Brunner AM, Strauss SH (2008) Genes for control of plant stature and form. New Phytol 177:589–607PubMedCrossRefGoogle Scholar
  24. Caldana C et al (2013) Systemic analysis of inducible target of rapamycin mutants reveal a general metabolic switch controlling growth in Arabidopsis thaliana. Plant J 73:897–909PubMedCrossRefGoogle Scholar
  25. Cans C et al (2003) Translationally controlled tumor protein acts as a guanine nucleotide dissociation inhibitor on the translation elongation factor eEF1A. Proc Natl Acad Sci USA 100:13892–13897PubMedPubMedCentralCrossRefGoogle Scholar
  26. Cao B, Lu Y, Chen G, Lei J (2010) Functional characterization of the translationally controlled tumor protein (TCTP) gene associated with growth and defense response in cabbage. Plant Cell Tissue Organ Cult 103:217–226CrossRefGoogle Scholar
  27. Chen SH et al (2007) A knockout mouse approach reveals that TCTP functions as an essential factor for cell proliferation and survival in a tissueor cell type–specific manner. Mol Biol Cell 18:2525–2532PubMedPubMedCentralCrossRefGoogle Scholar
  28. Chen W et al (2013) Tumor protein translationally controlled 1 is a p53 target gene that promotes cell survival. Cell Cycle 12:2321–2328PubMedPubMedCentralCrossRefGoogle Scholar
  29. Choudhury S, Panda P, Sahoo L, Panda SK (2013) Reactive oxygen species signaling in plants under abiotic stress. Plant Signal Behav 8:e23681PubMedCrossRefGoogle Scholar
  30. Coker JS, Davies E (2003) Selection of candidate housekeeping controls in tomato plants using EST data. Biotechniques 35:740–749PubMedGoogle Scholar
  31. Cook M, Tyers M (2007) Size control goes global. Curr Opin Biotechnol 18:341–350PubMedCrossRefGoogle Scholar
  32. Crickmore MA, Mann RS (2008) The control of size in animals: insights from selector genes. Bioessays 30:843–853PubMedPubMedCentralCrossRefGoogle Scholar
  33. Day SJ, Lawrence PA (2000) Measuring dimensions: the regulation of size and shape. Development 127:2977–2987PubMedGoogle Scholar
  34. del Rio LA (2015) ROS and RNS in plant physiology: an overview. J Exp Bot 66:2827–2837PubMedCrossRefGoogle Scholar
  35. Deprost D et al (2007) The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation. EMBO Rep 8:864–870PubMedPubMedCentralCrossRefGoogle Scholar
  36. Devoto A, Turner JG (2003) Regulation of jasmonate-mediated plant responses in Arabidopsis. Ann Bot 92:329–337PubMedPubMedCentralCrossRefGoogle Scholar
  37. Dong X, Yang B, Li Y, Zhong C, Ding J (2009) Molecular basis of the acceleration of the GDP-GTP exchange of human ras homolog enriched in brain by human translationally controlled tumor protein. J Biol Chem 284:23754–23764PubMedPubMedCentralCrossRefGoogle Scholar
  38. Doonan JH, Sablowski R (2010) Walls around tumours—why plants do not develop cancer. Nat Rev Cancer 10:794–802PubMedCrossRefGoogle Scholar
  39. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797PubMedPubMedCentralCrossRefGoogle Scholar
  40. Ermolayev V (2003) Comparison of Al-induced gene expression in sensitive and tolerant soybean cultivars. J Exp Bot 54:2745–2756PubMedCrossRefGoogle Scholar
  41. Estelle MA, Somerville C (1987) Auxin-resistant mutants of Arabidopsis thaliana with an altered morphology. Mol Gen Genet 206:200–206CrossRefGoogle Scholar
  42. Fabro G et al (2008) Genome-wide expression profiling Arabidopsis at the stage of Golovinomyces cichoracearum haustorium formation. Plant Physiol 146:1421–1439PubMedPubMedCentralCrossRefGoogle Scholar
  43. Feng Y, Liu D, Yao H, Wang J (2007) Solution structure and mapping of a very weak calcium-binding site of human translationally controlled tumor protein by NMR. Arch Biochem Biophys 467:48–57PubMedCrossRefGoogle Scholar
  44. Gachet Y et al (1999) The growth-related, translationally controlled protein P23 has properties of a tubulin binding protein and associates transiently with microtubules during the cell cycle. J Cell Sci 112:1257–1271PubMedGoogle Scholar
  45. Gnanasekar M, Thirugnanam S, Zheng G, Chen A, Ramaswamy K (2009) Gene silencing of translationally controlled tumor protein (TCTP) by siRNA inhibits cell growth and induces apoptosis of human prostate cancer cells. Int J Oncol 34:1241–1246PubMedGoogle Scholar
  46. Graidist P et al (2007) Fortilin binds Ca2+ and blocks Ca2+-dependent apoptosis in vivo. Biochem J 408:181–191PubMedPubMedCentralCrossRefGoogle Scholar
  47. Greenberg JT (1996) Programmed cell death: a way of life for plants. Proc Natl Acad Sci 93:12094–12097PubMedPubMedCentralCrossRefGoogle Scholar
  48. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-Pdb Viewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723PubMedCrossRefGoogle Scholar
  49. Gupta M et al (2013) A translationally controlled tumor protein negatively regulates the hypersensitive response in Nicotiana benthamiana. Plant Cell Physiol 54:1403–1414PubMedCrossRefGoogle Scholar
  50. Gutierrez-Galeano DF, Toscano-Morales R, Calderon-Perez B, Xoconostle-Cazares B, Ruiz-Medrano R (2014) Structural divergence of plant TCTPs. Front Plant Sci 5:361PubMedPubMedCentralGoogle Scholar
  51. Hafidh S et al (2016) Quantitative proteomics of the tobacco pollen tube secretome identifies novel pollen tube guidance proteins important for fertilization. Genome Biol 17:81PubMedPubMedCentralCrossRefGoogle Scholar
  52. Han Y-J, Kim Y-M, Hwang O-J, Kim J-I (2015) Characterization of a small constitutive promoter from Arabidopsis translationally controlled tumor protein (AtTCTP) gene for plant transformation. Plant Cell Rep 34:265–275PubMedCrossRefGoogle Scholar
  53. Hinojosa-Moya J et al (2008) Phylogenetic and structural analysis of translationally controlled tumor proteins. J Mol Evol 66:472–483PubMedCrossRefGoogle Scholar
  54. Hinojosa-Moya JJ et al (2013) Characterization of the pumpkin translationally-controlled tumor protein CmTCTP. Plant Signal Behav 8:e26477PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hoepflinger MC, Reitsamer J, Geretschlaeger AM, Mehlmer N, Tenhaken R (2013) The effect of translationally controlled tumour protein (TCTP) on programmed cell death in plants. BMC Plant Biol 13:135PubMedPubMedCentralCrossRefGoogle Scholar
  56. Hsu Y-C, Chern JJ, Cai Y, Liu M, Choi K-W (2007) Drosophila TCTP is essential for growth and proliferation through regulation of dRheb GTPase. Nature 445:785–788PubMedCrossRefGoogle Scholar
  57. Hu C et al (2015) Suppression of intestinal immunity through silencing of TCTP by RNAi in transgenic silkworm, Bombyx mori. Gene 574:82–87PubMedCrossRefGoogle Scholar
  58. Huang L et al (2014) Reference gene selection for quantitative real-time reverse-transcriptase PCR in orchardgrass subjected to various abiotic stresses. Gene 553:158–165PubMedCrossRefGoogle Scholar
  59. Itaya A, Matsuda Y, Gonzales RA, Nelson RS, Ding B (2002) Potato spindle tuber viroid strains of different pathogenicity induces and suppresses expression of common and unique genes in infected tomato. Mol Plant-Microbe Interact 15:990–999PubMedCrossRefGoogle Scholar
  60. Johnson K, Lenhard M (2011) Genetic control of plant organ growth. New Phytol 191:319–333PubMedCrossRefGoogle Scholar
  61. Jones AME, Thomas V, Bennett MH, Mansfield J, Grant M (2006) Modifications to the Arabidopsis defense proteome occur prior to significant transcriptional change in response to inoculation with Pseudomonas syringae. Plant Physiol 142:1603–1620PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kang JG, Yun J, Chung KS, Song PS, Park CM (2003) Promoter system of plant translationally controlled tumor protein gene. Patent US6518484 B2Google Scholar
  63. Kardeh S, Ashkani-Esfahani S, Alizadeh AM (2014) Paradoxical action of reactive oxygen species in creation and therapy of cancer. Eur J Pharmacol 735:150–168PubMedCrossRefGoogle Scholar
  64. Kim M, Jung Y, Lee K, Kim C (2000) Identification of the calcium binding sites in translationally controlled tumor protein. Arch Pharm Res 23:633–636PubMedCrossRefGoogle Scholar
  65. Kim Y-M et al (2012) Overexpression of Arabidopsis translationally controlled tumor protein gene AtTCTP enhances drought tolerance with rapid ABA-induced stomatal closure. Mol Cells 33:617–626PubMedPubMedCentralCrossRefGoogle Scholar
  66. Křeček P et al (2009) The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol 10:249PubMedPubMedCentralCrossRefGoogle Scholar
  67. Krizek BA (2009) Making bigger plants: key regulators of final organ size. Curr Opin Plant Biol 12:17–22PubMedCrossRefGoogle Scholar
  68. Lau OS, Deng XW (2010) Plant hormone signaling lightens up: integrators of light and hormones. Curr Opin Plant Biol 13:571–577PubMedCrossRefGoogle Scholar
  69. Leivar P, Monte E (2014) PIFs: systems integrators in plant development. Plant Cell 26:56–78PubMedPubMedCentralCrossRefGoogle Scholar
  70. Li L, Yu A-Q (2015) The functional role of peroxiredoxin 3 in reactive oxygen species, apoptosis, and chemoresistance of cancer cells. J Cancer Res Clin Oncol 141:2071–2077PubMedCrossRefGoogle Scholar
  71. Li D, Deng Z, Liu X, Qin B (2013) Molecular cloning, expression profiles and characterization of a novel translationally controlled tumor protein in rubber tree (Hevea brasiliensis). J Plant Physiol 170:497–504PubMedCrossRefGoogle Scholar
  72. Lliso I, Tadeo FR, Phinney BS, Wilkerson CG, Talón M (2007) Protein changes in the albedo of citrus fruits on postharvesting storage. J Agric Food Chem 55:9047–9053PubMedCrossRefGoogle Scholar
  73. Lloyd AC (2013) The regulation of cell size. Cell 154:1194–1205PubMedCrossRefGoogle Scholar
  74. Lopez AP, Franco AR (2006) Cloning and expression of cDNA encoding translationally controlled tumor protein from strawberry fruits. Biol Plant 50:447–449CrossRefGoogle Scholar
  75. Mahfouz MM (2006) Arabidopsis target of rapamycin interacts with RAPTOR, which regulates the activity of S6 kinase in response to osmotic stress signals. Plant Cell 18:477–490PubMedPubMedCentralCrossRefGoogle Scholar
  76. Masura SS, Ahmad Parveez GK, Eng Ti LL (2011) Isolation and characterization of an oil palm constitutive promoter derived from a translationally control tumor protein (TCTP) gene. Plant Physiol Biochem 49:701–708PubMedCrossRefGoogle Scholar
  77. Menand B, Meyer C, Robaglia C (2004) Plant growth and the TOR pathway. Curr Top Microbiol Immunol 279:97–113PubMedGoogle Scholar
  78. Merai Z et al (2006) Double-stranded RNA binding may be a general plant RNA viral strategy to suppress RNA silencing. J Virol 80:5747–5756PubMedPubMedCentralCrossRefGoogle Scholar
  79. Meyuhas O, Kahan T (2015) The race to decipher the top secrets of TOP mRNAs. Biochim Biophys Acta 1849:801–811PubMedCrossRefGoogle Scholar
  80. Møller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481PubMedCrossRefGoogle Scholar
  81. Moreau M et al (2012) Mutations in the Arabidopsis homolog of LST8/GβL, a partner of the target of rapamycin kinase, impair plant growth, flowering, and metabolic adaptation to long days. Plant Cell 24:463–481PubMedPubMedCentralCrossRefGoogle Scholar
  82. Morel JB, Dangl JL (1997) The hypersensitive response and the induction of cell death in plants. Cell Death Differ 4:671–683PubMedCrossRefGoogle Scholar
  83. Nakkaew A, Chotigeat W, Phongdara A (2010) Molecular cloning and expression of EgTCTP, encoding a calcium binding protein, enhances the growth of callus in oil palm (Elaeis guineensis, Jacq). Sonklanakarin. J Sci Technol 32:561–569Google Scholar
  84. Narsai R et al (2007) Genome-wide analysis of mRNA decay rates and their determinants in Arabidopsis thaliana. Plant Cell 19:3418–3436PubMedPubMedCentralCrossRefGoogle Scholar
  85. Nibau C, Wu H, Cheung AY (2006) RAC/ROP GTPases: ‘hubs’ for signal integration and diversification in plants. Trends Plant Sci 11:309–315PubMedCrossRefGoogle Scholar
  86. Niklas KJ (2015) A phyletic perspective on cell growth. Cold Spring Harb Perspect Biol 7:a019158PubMedPubMedCentralCrossRefGoogle Scholar
  87. Nuoffer C, Wu SK, Dascher C, Balch WE (1997) Mss4 does not function as an exchange factor for Rab in endoplasmic reticulum to Golgi transport. Mol Biol Cell 8:1305–1316PubMedPubMedCentralCrossRefGoogle Scholar
  88. O’Brien ET, Salmon ED, Erickson HP (1997) How calcium causes microtubule depolymerization. Cell Motil Cytoskeleton 36:125–135PubMedCrossRefGoogle Scholar
  89. Ohme-Takagi M, Taylor CB, Newman TC, Green PJ (1993) The effect of sequences with high AU content on mRNA stability in tobacco. Proc Natl Acad Sci USA 90:11811–11815PubMedPubMedCentralCrossRefGoogle Scholar
  90. Oldham S, Montagne J, Radimerski T, Thomas G, Hafen E (2000) Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin. Genes Dev 14:2689–2694PubMedPubMedCentralCrossRefGoogle Scholar
  91. Pan D (2007) Hippo signaling in organ size control. Genes Dev 21:886–897PubMedCrossRefGoogle Scholar
  92. Panstruga R (2003) Establishing compatibility between plants and obligate biotrophic pathogens. Curr Opin Plant Biol 6:320–326PubMedCrossRefGoogle Scholar
  93. Pavy N et al (2005) Generation, annotation, analysis and database integration of 16,500 white spruce EST clusters. BMC Genomics 6:144PubMedPubMedCentralCrossRefGoogle Scholar
  94. Pay A, Heberle-Bors E, Hirt H (1992) An alfalfa cDNA encodes a protein with homology to translationally controlled human tumor protein. Plant Mol Biol 19:501–503PubMedCrossRefGoogle Scholar
  95. Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295PubMedCrossRefGoogle Scholar
  96. Penzo-Méndez AI, Stanger BZ (2015) Organ-size regulation in mammals. Cold Spring Harb Perspect Biol 7:a019240PubMedPubMedCentralCrossRefGoogle Scholar
  97. Qin X et al (2011) Molecular cloning, characterization and expression of cDNA encoding translationally controlled tumor protein (TCTP) from Jatropha curcas L. Mol Biol Rep 38:3107–3112PubMedCrossRefGoogle Scholar
  98. Rehmann H et al (2008) Biochemical characterisation of TCTP questions its function as a guanine nucleotide exchange factor for Rheb. FEBS Lett 582:3005–3010PubMedCrossRefGoogle Scholar
  99. Ren M et al (2011) Target of rapamycin regulates development and ribosomal RNA expression through kinase domain in Arabidopsis. Plant Physiol 155:1367–1382PubMedPubMedCentralCrossRefGoogle Scholar
  100. Ren M et al (2012) Target of rapamycin signaling regulates metabolism, growth, and life span in Arabidopsis. Plant Cell 24:4850–4874PubMedPubMedCentralCrossRefGoogle Scholar
  101. Rexin D, Meyer C, Robaglia C, Veit B (2015) TOR signalling in plants. Biochem J 470:1–14PubMedCrossRefGoogle Scholar
  102. Rho SB et al (2011) Anti-apoptotic protein TCTP controls the stability of the tumor suppressor p53. FEBS Lett 585:29–35PubMedCrossRefGoogle Scholar
  103. Robaglia C et al (2004) Plant growth: the translational connection. Biochem Soc Trans 32:581–584PubMedCrossRefGoogle Scholar
  104. Russell EG, Cotter TG (2015) New insight into the role of reactive oxygen species (ROS) in cellular signal-transduction processes. Int Rev Cell Mol Biol 319:221–254PubMedCrossRefGoogle Scholar
  105. Sage-Ono K, Ono M, Harada H, Kamada H (1998) Dark-induced accumulation of mRNA for a homolog of translationally controlled tumor protein (TCTP) in Pharbitis. Plant Cell Physiol 39:357–360PubMedCrossRefGoogle Scholar
  106. Santa Brígida AB et al (2014) Molecular cloning and characterization of a cassava translationally controlled tumor protein gene potentially related to salt stress response. Mol Biol Rep 41:1787–1797PubMedCrossRefGoogle Scholar
  107. Susini L et al (2008) TCTP protects from apoptotic cell death by antagonizing bax function. Cell Death Differ 15:1211–1220PubMedCrossRefGoogle Scholar
  108. Szécsi J et al (2006) BIGPETALp, a bHLH transcription factor is involved in the control of Arabidopsis petal size. EMBO J 25:3912–3920PubMedPubMedCentralCrossRefGoogle Scholar
  109. Tao JJ et al (2015) Tobacco translationally controlled tumor protein interacts with ethylene receptor tobacco Histidine Kinase1 and enhances plant growth through promotion of cell proliferation. Plant Physiol 169:96–114PubMedPubMedCentralCrossRefGoogle Scholar
  110. Thaw P et al (2001) Structure of TCTP reveals unexpected relationship with guanine nucleotide-free chaperones. Nat Struct Mol Biol 8:701–704CrossRefGoogle Scholar
  111. Thayanithy V (2005) Evolution and expression of translationally controlled tumour protein (TCTP) of fish. Comp Biochem Physiol B Biochem Mol Biol 142:8–17PubMedCrossRefGoogle Scholar
  112. Thiele H, Berger M, Skalweit A, Thiele BJ (2000) Expression of the gene and processed pseudogenes encoding the human and rabbit translationally controlled tumour protein (TCTP). Eur J Biochem 267:5473–5481PubMedCrossRefGoogle Scholar
  113. Van Hautegem T, Waters AJ, Goodrich J, Nowack MK (2015) Only in dying, life: programmed cell death during plant development. Trends Plant Sci 20:102–113PubMedCrossRefGoogle Scholar
  114. Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136:1005–1016PubMedCrossRefGoogle Scholar
  115. Veena JH, Doerge RW, Gelvin SB (2003) Transfer of T-DNA and Vir proteins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation and suppresses host defense gene expression. Plant J Cell Mol Biol 35:219–236CrossRefGoogle Scholar
  116. Venkatachalam P, Thulaseedharan A, Raghothama K (2007) Identification of expression profiles of tapping panel dryness (TPD) associated genes from the latex of rubber tree (Hevea brasiliensis Muell. Arg.) Planta 226:499–515PubMedCrossRefGoogle Scholar
  117. Vincent D et al (2007) Proteomic analysis reveals differences between Vitis vinifera L. cv. Chardonnay and cv. Cabernet Sauvignon and their responses to water deficit and salinity. J Exp Bot 58:1873–1892PubMedCrossRefGoogle Scholar
  118. Voinnet O, Vain P, Angell S, Baulcombe DC (1998) Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell 95:177–187PubMedCrossRefGoogle Scholar
  119. Wang X et al (2008) Re-evaluating the roles of proposed modulators of mammalian target of Rapamycin Complex 1 (mTORC1) signaling. J Biol Chem 283:30482–30492PubMedPubMedCentralCrossRefGoogle Scholar
  120. Wang F, Shang Y, Yang L, Zhu C (2012) Comparative proteomic study and functional analysis of translationally controlled tumor protein in rice roots under Hg2+ stress. J Environ Sci 24:2149–2158CrossRefGoogle Scholar
  121. Wang ZQ, Li GZ, Gong QQ, Li GX, Zheng SJ (2015) OsTCTP, encoding a translationally controlled tumor protein, plays an important role in mercury tolerance in rice. BMC Plant Biol 15:123PubMedPubMedCentralCrossRefGoogle Scholar
  122. Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ (2009) Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191PubMedPubMedCentralCrossRefGoogle Scholar
  123. Wixler V et al (2011) Identification and characterisation of novel Mss4-binding Rab GTPases. Biol Chem 392:239–248PubMedCrossRefGoogle Scholar
  124. Woo H-H, Hawes MC (1997) Cloning of genes whose expression is correlated with mitosis and localized in dividing cells in root caps of Pisum sativum L. Plant Mol Biol 35:1045–1051PubMedCrossRefGoogle Scholar
  125. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484PubMedCrossRefGoogle Scholar
  126. Xia XJ et al (2015) Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J Exp Bot 66:2839–2856PubMedCrossRefGoogle Scholar
  127. Xiong Y, Sheen J (2012) Rapamycin and glucose-target of rapamycin (TOR) protein signaling in plants. J Biol Chem 287:2836–2842PubMedCrossRefGoogle Scholar
  128. Xiong Y et al (2013) Glucose–TOR signalling reprograms the transcriptome and activates meristems. Nature 496:181–186PubMedPubMedCentralCrossRefGoogle Scholar
  129. Yang Y et al (2005) An N-terminal region of translationally controlled tumor protein is required for its antiapoptotic activity. Oncogene 24:4778–4788PubMedPubMedCentralCrossRefGoogle Scholar
  130. Yarm FR (2002) Plk phosphorylation regulates the microtubule-stabilizing protein TCTP. Mol Cell Biol 22:6209–6221PubMedPubMedCentralCrossRefGoogle Scholar
  131. Yu R, Huang RF, Wang XC, Yuan M (2001) Microtubule dynamics are involved in stomatal movement of Vicia faba L. Protoplasma 216:113–118PubMedCrossRefGoogle Scholar
  132. Zhang H, Stallock JP, Ng JC, Reinhard C, Neufeld TP (2000) Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev 14:2712–2724PubMedPubMedCentralCrossRefGoogle Scholar
  133. Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crop Res 97:111–119CrossRefGoogle Scholar
  134. Zhang L, Li W, Han S, Yang W, Qi L (2013) cDNA cloning, genomic organization and expression analysis during somatic embryogenesis of the translationally controlled tumor protein (TCTP) gene from Japanese larch (Larix leptolepis). Gene 529:150–158PubMedCrossRefGoogle Scholar
  135. Zhang JM et al (2014) Cotton TCTP1 gene encoding a translationally controlled tumor protein participates in plant response and tolerance to aphids. Plant Cell Tiss Org Cult 117:145–156CrossRefGoogle Scholar
  136. Zhu Y (2002) Movement of potato spindle tuber viroid reveals regulatory points of phloem-mediated RNA traffic. Plant Physiol 130:138–146PubMedPubMedCentralCrossRefGoogle Scholar
  137. Zhuo K et al (2017) A novel Meloidogyne enterolobii effector MeTCTP promotes parasitism by suppressing programmed cell death in host plants. Mol Plant Pathol 18:45–54PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1LyonFrance

Personalised recommendations