A Dataset of Routine Daily Activities in an Instrumented Home

  • Julien CuminEmail author
  • Grégoire Lefebvre
  • Fano Ramparany
  • James L. Crowley
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10586)


We present a new dataset, called Orange4Home, of activities of daily living of one inhabitant in a smart home environment. We collected data from 236 heterogeneous sensors in a fully integrated instrumented apartment. Data collection spanned 4 consecutive weeks of working days for a total of around 180 h of recording. 20 classes of varied activities were labeled in situ. We report the methodology adopted to establish a representative, challenging dataset, as well as present the apartment and sensors used to collect this data.


Dataset Activities of daily living Smart home 



We thank Nicolas Bonnefond and Stan Borkowski for their technical and organizational help. This work benefited from the support of the French State through the Agence Nationale de la Recherche under the Future Investments program referenced ANR-11-EQPX-0002.


  1. 1.
    Alemdar, H., Ertan, H., Incel, O.D., Ersoy, C.: Aras human activity datasets in multiple homes with multiple residents. In: 7th International Conference on Pervasive Computing Technologies for Healthcare, pp. 232–235 (2013)Google Scholar
  2. 2.
    Cook, D.J., Krishnan, N.C., Rashidi, P.: Activity discovery and activity recognition: a new partnership. IEEE Trans. Cybern. 43(3), 820–828 (2013)CrossRefGoogle Scholar
  3. 3.
    Crowley, J.L., Coutaz, J., Rey, G., Reignier, P.: Perceptual components for context aware computing. In: Borriello, G., Holmquist, L.E. (eds.) UbiComp 2002. LNCS, vol. 2498, pp. 117–134. Springer, Heidelberg (2002). doi: 10.1007/3-540-45809-3_9 CrossRefGoogle Scholar
  4. 4.
    Cumin, J., Lefebvre, G., Ramparany, F., Crowley, J.L.: Human activity recognition using place-based decision fusion in smart homes. In: Brézillon, P., Turner, R., Penco, C. (eds.) CONTEXT 2017. LNCS, vol. 10257, pp. 137–150. Springer, Cham (2017). doi: 10.1007/978-3-319-57837-8_11 CrossRefGoogle Scholar
  5. 5.
    Li, K., Fu, Y.: Prediction of human activity by discovering temporal sequence patterns. IEEE Trans. Pattern Anal. Mach. Intell. 36(8), 1644–1657 (2014)CrossRefGoogle Scholar
  6. 6.
    Ordóñez, F.J., Roggen, D.: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition. Sensors 16(1), 115 (2016)CrossRefGoogle Scholar
  7. 7.
    Roggen, D., Calatroni, A., Rossi, M., Holleczek, T., Förster, K., Tröster, G., Lukowicz, P., Bannach, D., Pirkl, G., Ferscha, A., et al.: Collecting complex activity datasets in highly rich networked sensor environments. In: 2010 Seventh International Conference on Networked Sensing Systems (INSS), pp. 233–240. IEEE (2010)Google Scholar
  8. 8.
    Tapia, E.M., Intille, S.S., Larson, K.: Activity recognition in the home using simple and ubiquitous sensors. In: Ferscha, A., Mattern, F. (eds.) Pervasive 2004. LNCS, vol. 3001, pp. 158–175. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-24646-6_10 CrossRefGoogle Scholar
  9. 9.
    van Kasteren, T.L.M., Englebienne, G., Kröse, B.J.A.: Transferring knowledge of activity recognition across sensor networks. In: Floréen, P., Krüger, A., Spasojevic, M. (eds.) Pervasive 2010. LNCS, vol. 6030, pp. 283–300. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-12654-3_17 CrossRefGoogle Scholar
  10. 10.
    Youngblood, G.M., Cook, D.J.: Data mining for hierarchical model creation. IEEE Trans. Syst. Man Cybern. 37(4), 561–572 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Julien Cumin
    • 1
    • 2
    Email author
  • Grégoire Lefebvre
    • 1
  • Fano Ramparany
    • 1
  • James L. Crowley
    • 2
  1. 1.Orange LabsMeylanFrance
  2. 2.Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIGGrenobleFrance

Personalised recommendations