Advertisement

Combining Fog Architectures and Distributed Event-Based Systems for Mobile Sensor Location Certification

  • Fátima Castro-Jul
  • Denis Conan
  • Sophie Chabridon
  • Rebeca P. Díaz Redondo
  • Ana Fernández Vilas
  • Chantal Taconet
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10586)

Abstract

Event filtering is of paramount importance in large-scale ur- ban sensing, where an enormous quantity of data is generated. Multiple criteria can be considered for filtering, location being one of the most valuable ones. Obtaining high-quality (trustworthy, accurate) location information helps to contextualize the event content and provides trust both on the source producer and on the publication itself. However, IoT-based urban services rely often on cloud architectures, which have no means to support location certification. To meet the need for location certification support in urban distributed event-based systems (DEBS), we propose three different fog architectures targeted at scenarios with mobile event producers.

Keywords

Participatory sensing Smart city Internet of Things 

Notes

Acknowledgments

This work is funded by: the European Regional Development Fund (ERDF) and the Galician Regional Government under agreement for funding the Atlantic Research Center for Information and Communication Technologies (AtlantTIC), the Spanish Ministry of Economy and Competitiveness under the National Science Program (TEC2014-54335-C4-3-R) and a predoctoral grant financed by the Galician Regional Government (Consellería de Cultura, Educación e Ordenación Universitaria) and the European Social Fund.

References

  1. 1.
    Eugster, P., Felber, P., Guerraoui, R., Kermarrec, A.-M.: The many faces of publish/subscribe. ACM Comput. Surv. 35, 114–131 (2003)CrossRefGoogle Scholar
  2. 2.
    Antonic, A., Roankovic, K., Marjanovic, M., Pripuic, K., et al.: A mobile crowdsensing ecosystem enabled by a cloud-based publish/subscribe middleware. In: FiCloud 2014, pp. 107–114, IEEE (2014)Google Scholar
  3. 3.
    Lim, L., Marie, P., Conan, D., Chabridon, S., Desprats, T., Manzoor, A.: Enhancing context data distribution for the internet of things using QoC-awareness and attribute-based access control. Ann. Telecommun. 71(3), 121–132 (2016)CrossRefGoogle Scholar
  4. 4.
    Castro-Jul, F., Díaz-Redondo, R.P., Fernández-Vilas, A.: Have you also seen that? Collaborative alert assessment in ad hoc participatory sensing. In: García, C.R., Caballero-Gil, P., Burmester, M., Quesada-Arencibia, A. (eds.) UCAmI/IWAAL/AmIHEALTH -2016. LNCS, vol. 10070, pp. 125–130. Springer, Cham (2016). doi: 10.1007/978-3-319-48799-1_15 CrossRefGoogle Scholar
  5. 5.
    Burke, J., Estrin, D., Hansen, M., Parker, A., Ramanathan, N., Reddy, S., Srivastava, M.: Participatory sensing. Center for Embedded Network Sensing (2006)Google Scholar
  6. 6.
    Ganti, R.K., Ye, F., Lei, H.: Mobile crowdsensing: current state and future challenges. IEEE Commun. Mag. 49(11), 32–39 (2011)CrossRefGoogle Scholar
  7. 7.
    Guo, B., Yu, Z., Zhou, X., Zhang, D.: From participatory sensing to mobile crowd sensing. In: PERCOM 2014, pp. 593–598. IEEE (2014)Google Scholar
  8. 8.
    Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet of things. In: MCC 2012, pp. 13–16. ACM (2012)Google Scholar
  9. 9.
    Yannuzzi, M., Milito, R., Serral-Gracià, R., Montero, D., Nemirovsky, M.: Key ingredients in an IoT recipe: fog computing, cloud computing, and more fog computing. In: CAMAD 2014, pp. 325–329. IEEE (2014)Google Scholar
  10. 10.
    Hong, K., Lillethun, D., Ramachandran, U., Ottenwälder, B., Koldehofe, B.: Mobile fog: a programming model for large-scale applications on the internet of things. In: ACM SIGCOMM, MCC 2013, pp. 15–20. ACM (2013)Google Scholar
  11. 11.
    Munir, A., Kansakar, P., Khan, S.U.: IFCIoT: integrated fog cloud IoT architectural paradigm for future internet of things. CoRR (2017). http://arxiv.org/abs/org/abs/1701.08474
  12. 12.
    Guerraoui, R., Rodrigues, L.: Introduction to Reliable Distributed Programming. Springer, Heidelberg (2006). doi: 10.1007/3-540-28846-5 MATHGoogle Scholar
  13. 13.
    Chen, W.: Abortable consensus and its application to probabilistic atomic broadcast. Technical report MSR-TR-2006-135, Microsoft Research (2006)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Fátima Castro-Jul
    • 1
  • Denis Conan
    • 2
  • Sophie Chabridon
    • 2
  • Rebeca P. Díaz Redondo
    • 1
  • Ana Fernández Vilas
    • 1
  • Chantal Taconet
    • 2
  1. 1.I&C Lab, AtlantTIC Research CenterUniversidade de VigoVigoSpain
  2. 2.SAMOVAR, Télécom SudParis, CNRS, Université Paris-SaclayÉvryFrance

Personalised recommendations