Advertisement

On Similarity-Based Unfolding

  • Ginés Moreno
  • Jaime Penabad
  • José Antonio Riaza
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10564)

Abstract

The unfolding transformation has been widely used in many declarative frameworks for improving the efficiency and scalability of programs after applying computational steps on their rules. Inspired by our previous experiences in fuzzy logic languages not dealing with similarity relations, in this work we adapt such operation to the so-called FASILL language (acronym of “Fuzzy Aggregators and Similarity Into a Logic Language”) which has been recently designed and implemented in our research group for coping with implicit/explicit truth degree annotations, a great variety of connectives and unification by similarity.

Keywords

Fuzzy logic programming Similarity relations Unfolding 

References

  1. 1.
    Almendros-Jiménez, J.M., Bofill, M., Luna-Tedesqui, A., Moreno, G., Vázquez, C., Villaret, M.: Fuzzy XPath for the Automatic Search of Fuzzy Formulae Models. In: Beierle, C., Dekhtyar, A. (eds.) SUM 2015. LNCS, vol. 9310, pp. 385–398. Springer, Cham (2015). doi: 10.1007/978-3-319-23540-0_26 CrossRefGoogle Scholar
  2. 2.
    Julián-Iranzo, P., Moreno, G., Penabad, J.: On fuzzy unfolding: a multi-adjoint approach. Fuzzy Sets Syst. 154, 16–33 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Julián-Iranzo, P., Moreno, G., Penabad, J., Vázquez, C.: A fuzzy logic programming environment for managing similarity and truth degrees. In: Escobar, S. (ed.), Proceedings of XIV Jornadas sobre Programación y Lenguajes, PROLE 2014, Cádiz, Spain, vol. 173. EPTCS, pp. 71–86 (2015). http://dx.doi.org/10.4204/EPTCS.173.6
  4. 4.
    Julián-Iranzo, P., Moreno, G., Penabad, J., Vázquez, C.: A Declarative Semantics for a Fuzzy Logic Language Managing Similarities and Truth Degrees. In: Alferes, J.J.J., Bertossi, L., Governatori, G., Fodor, P., Roman, D. (eds.) RuleML 2016. LNCS, vol. 9718, pp. 68–82. Springer, Cham (2016). doi: 10.1007/978-3-319-42019-6_5 CrossRefGoogle Scholar
  5. 5.
    Julián-Iranzo, P., Rubio-Manzano, C.: An efficient fuzzy unification method and its implementation into the bousi prolog system. In: Proceedings of the IEEE International Conference on Fuzzy Systems, Barcelona, Spain, pp. 1–8. IEEE (2010). http://dx.doi.org/10.1109/FUZZY.2010.5584193
  6. 6.
    Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic programming and its applications. J. Logic Program. 12, 335–367 (1992)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Medina, J., Ojeda-Aciego, M., Vojtáš, P.: Similarity-based unification: a multi-adjoint approach. Fuzzy Sets Syst. 146, 43–62 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Pettorossi, A., Proietti, M.: Rules and strategies for transforming functional and logic programs. ACM Comput. Surv. 28(2), 360–414 (1996)CrossRefGoogle Scholar
  9. 9.
    Sessa, M.I.: Approximate reasoning by similarity-based SLD resolution. Theoret. Comput. Sci. 275(1–2), 389–426 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Tamaki, H., Sato, T.: Unfold/Fold transformations of logic programs. In: Tärnlund, S. (ed.), Proceedings of Second International Conference on Logic Programming, pp. 127–139 (1984)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ginés Moreno
    • 1
  • Jaime Penabad
    • 2
  • José Antonio Riaza
    • 1
  1. 1.Department of Computing SystemsUCLMAlbaceteSpain
  2. 2.Department of MathematicsUCLMAlbaceteSpain

Personalised recommendations