# Fuzzy Description Logics – A Survey

• Stefan Borgwardt
• Rafael Peñaloza
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10564)

## Abstract

Mathematical Fuzzy Logics [51, 60] have a long tradition with roots going back to the many-valued logics of Łukasiewicz, Gödel, and Kleene [57, 68, 73] and the Fuzzy Set Theory of Zadeh [111]. Their purpose is to model vagueness or imprecision in the real world, by introducing new degrees of truth as additional shades of gray between the Boolean true and false. For example, one can express the distinction between a person x having a high fever or a low fever as the degree of truth of the logical statement $$\mathsf {Fever} (x)$$. One of the central properties of fuzzy logics is truth functionality—the truth degree of a complex logical formula is uniquely determined by the truth degrees of its subformulas. This is a fundamental difference to other quantitative logics like probabilistic or possibilistic logics [56, 83].

## References

1. 1.
Alsinet, T., Barroso, D., Béjar, R., Bou, F., Cerami, M., Esteva, F.: On the implementation of a Fuzzy DL solver over infinite-valued product logic with SMT solvers. In: Liu, W., Subrahmanian, V.S., Wijsen, J. (eds.) SUM 2013. LNCS, vol. 8078, pp. 325–330. Springer, Heidelberg (2013). doi:
2. 2.
Baader, F., Borgwardt, S., Peñaloza, R.: On the decidability status of fuzzy $$\cal{ALC}$$ with general concept inclusions. J. Philos. Logic 44(2), 117–146 (2015)
3. 3.
Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications, 2nd edn. Cambridge University Press (2007)Google Scholar
4. 4.
Baader, F., Hladik, J., Peñaloza, R.: Automata can show PSpace results for description logics. Inf. Comput. 206(9–10), 1045–1056 (2008)
5. 5.
Baader, F., Peñaloza, R.: Are fuzzy description logics with general concept inclusion axioms decidable? In: Proceedings of the 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011), pp. 1735–1742 (2011)Google Scholar
6. 6.
Baader, F., Peñaloza, R.: GCIs make reasoning in fuzzy DL with the product T-norm undecidable. In: Proceedings of the 24th International Workshop on Description Logics (DL 2011), pp. 37–47 (2011)Google Scholar
7. 7.
Baader, F., Peñaloza, R.: On the undecidability of fuzzy description logics with GCIs and product T-norm. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS, vol. 6989, pp. 55–70. Springer, Heidelberg (2011). doi:
8. 8.
Bobillo, F.: The role of crisp elements in fuzzy ontologies: the case of fuzzy OWL 2 EL. IEEE Trans. Fuzzy Syst. 24(5), 1193–1209 (2016)
9. 9.
Bobillo, F., Bou, F., Straccia, U.: On the failure of the finite model property in some fuzzy description logics. Fuzzy Sets Syst. 172(1), 1–12 (2011)
10. 10.
Bobillo, F., Cerami, M., Esteva, F., García-Cerdaña, À., Peñaloza, R., Straccia, U.: Fuzzy description logics. In: Handbook of Mathematical Fuzzy Logic, vol. 3, 58, chap. XVI, pp. 1109–1188. College Publications (2016)Google Scholar
11. 11.
Bobillo, F., Delgado, M., Gómez-Romero, J.: A crisp representation for fuzzy $$\cal{SHOIN}$$ with fuzzy nominals and general concept inclusions. In: da Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2005-2007. LNCS, vol. 5327, pp. 174–188. Springer, Heidelberg (2008). doi:
12. 12.
Bobillo, F., Delgado, M., Gómez-Romero, J.: Optimizing the crisp representation of the fuzzy description logic $$\cal{SROIQ}$$. In: da Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) URSW 2005-2007. LNCS, vol. 5327, pp. 189–206. Springer, Heidelberg (2008). doi:
13. 13.
Bobillo, F., Delgado, M., Gómez-Romero, J.: Crisp representations and reasoning for fuzzy ontologies. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 17(4), 501–530 (2009)
14. 14.
Bobillo, F., Delgado, M., Gómez-Romero, J.: Reasoning in fuzzy OWL 2 with DeLorean. In: Bobillo, F., Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) UniDL/URSW 2008-2010. LNCS, vol. 7123, pp. 119–138. Springer, Heidelberg (2013). doi:
15. 15.
Bobillo, F., Delgado, M., Gómez-Romero, J., Straccia, U.: Fuzzy description logics under Gödel semantics. Int. J. Approximate Reasoning 50(3), 494–514 (2009)
16. 16.
Bobillo, F., Delgado, M., Gómez-Romero, J., Straccia, U.: Joining Gödel and Zadeh fuzzy logics in fuzzy description logics. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 20(4), 475–508 (2012)
17. 17.
Bobillo, F., Straccia, U.: A fuzzy description logic with product t-norm. In: Proceedings of the 2007 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2007), pp. 1–6 (2007)Google Scholar
18. 18.
Bobillo, F., Straccia, U.: Fuzzy description logics with general t-norms and datatypes. Fuzzy Sets Syst. 160(23), 3382–3402 (2009)
19. 19.
Bobillo, F., Straccia, U.: Fuzzy ontology representation using OWL 2. Int. J. Approximate Reasoning 52(7), 1073–1094 (2011)
20. 20.
Bobillo, F., Straccia, U.: Reasoning with the finitely many-valued Łukasiewicz fuzzy description logic $$\cal{SROIQ}$$. Inf. Sci. 181, 758–778 (2011)
21. 21.
Bobillo, F., Straccia, U.: Aggregation operators for fuzzy ontologies. Appl. Soft Comput. 13(9), 3816–3830 (2013)
22. 22.
Bobillo, F., Straccia, U.: Finite fuzzy description logics and crisp representations. In: Bobillo, F., Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) UniDL/URSW 2008-2010. LNCS, vol. 7123, pp. 99–118. Springer, Heidelberg (2013). doi:
23. 23.
Bobillo, F., Straccia, U.: The fuzzy ontology reasoner fuzzyDL. Knowl.-Based Syst. 95, 12–34 (2016)
24. 24.
Borgwardt, S.: Fuzzy Description Logics with General Concept Inclusions. Ph.D. thesis, Technische Universität Dresden, Germany (2014)Google Scholar
25. 25.
Borgwardt, S.: Fuzzy DLs over finite lattices with nominals. In: Proceedings of the 27th International Workshop on Description Logics (DL 2014), pp. 58–70 (2014)Google Scholar
26. 26.
Borgwardt, S., Cerami, M., Peñaloza, R.: The complexity of subsumption in fuzzy $$\cal{EL}$$. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI 2015), pp. 2812–2818 (2015)Google Scholar
27. 27.
Borgwardt, S., Cerami, M., Peñaloza, R.: The complexity of fuzzy $$\cal{EL}$$ under the Łukasiewicz t-norm. Int. J. Approximate Reasoning (2017, submitted)Google Scholar
28. 28.
Borgwardt, S., Cerami, M., Peñaloza, R.: Łukasiewicz fuzzy $$\cal{EL}$$ is undecidable. In: Proceedings of the 30th International Workshop on Description Logics (DL 2017) (to appear, 2017)Google Scholar
29. 29.
Borgwardt, S., Distel, F., Peñaloza, R.: Gödel negation makes unwitnessed consistency crisp. In: Proceedings of the 25th International Workshop on Description Logics (DL 2012), pp. 103–113 (2012)Google Scholar
30. 30.
Borgwardt, S., Distel, F., Peñaloza, R.: How fuzzy is my fuzzy description logic? In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 82–96. Springer, Heidelberg (2012). doi:
31. 31.
Borgwardt, S., Distel, F., Peñaloza, R.: Decidable Gödel description logics without the finitely-valued model property. In: Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning (KR 2014), pp. 228–237 (2014)Google Scholar
32. 32.
Borgwardt, S., Distel, F., Peñaloza, R.: Gödel description logics with general models. In: Proceedings of the 27th International Workshop on Description Logics (DL 2014), pp. 391–403 (2014) (poster paper)Google Scholar
33. 33.
Borgwardt, S., Distel, F., Peñaloza, R.: The limits of decidability in fuzzy description logics with general concept inclusions. Artif. Intell. 218, 23–55 (2015)
34. 34.
Borgwardt, S., Leyva Galano, J.A., Peñaloza, R.: The fuzzy description logic $$\sf G\text{-}\cal{FL}_0$$ with greatest fixed-point semantics. In: Proceedings of the 14th European Conference on Logics in Artificial Intelligence (JELIA 2014), pp. 62–76 (2014)Google Scholar
35. 35.
Borgwardt, S., Mailis, T., Peñaloza, R., Turhan, A.Y.: Answering fuzzy conjunctive queries over finitely valued fuzzy ontologies. J. Data Semant. 5(2), 55–75 (2016)
36. 36.
Borgwardt, S., Peñaloza, R.: Description logics over lattices with multi-valued ontologies. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011), pp. 768–773 (2011)Google Scholar
37. 37.
Borgwardt, S., Peñaloza, R.: Non-Gödel negation makes unwitnessed consistency undecidable. In: Proceedings of the 25th International Workshop on Description Logics (DL 2012), pp. 411–421 (2012) (poster paper)Google Scholar
38. 38.
Borgwardt, S., Peñaloza, R.: A tableau algorithm for fuzzy description logics over residuated De Morgan lattices. In: Krötzsch, M., Straccia, U. (eds.) RR 2012. LNCS, vol. 7497, pp. 9–24. Springer, Heidelberg (2012). doi:
39. 39.
Borgwardt, S., Peñaloza, R.: Undecidability of fuzzy description logics. In: Proceedings of the 13th International Conference on Principles of Knowledge Representation and Reasoning (KR 2012), pp. 232–242 (2012)Google Scholar
40. 40.
Borgwardt, S., Peñaloza, R.: About subsumption in fuzzy $$\cal{E\!L}$$. In: Proceedings of the 26th International Workshop on Description Logics (DL 2013) (2013) (poster paper)Google Scholar
41. 41.
Borgwardt, S., Peñaloza, R.: The complexity of lattice-based fuzzy description logics. J. Data Semant. 2(1), 1–19 (2013)
42. 42.
Borgwardt, S., Peñaloza, R.: Positive subsumption in fuzzy $$\cal{E\!L}$$ with general t-norms. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI 2013), pp. 789–795 (2013)Google Scholar
43. 43.
Borgwardt, S., Peñaloza, R.: Consistency reasoning in lattice-based fuzzy description logics. Int. J. Approximate Reasoning 55(9), 1917–1938 (2014)
44. 44.
Borgwardt, S., Peñaloza, R.: Reasoning in expressive description logics under infinitely valued Gödel semantics. In: Lutz, C., Ranise, S. (eds.) FroCoS 2015. LNCS, vol. 9322, pp. 49–65. Springer, Cham (2015). doi:
45. 45.
Borgwardt, S., Peñaloza, R.: Reasoning in fuzzy description logics using automata. Fuzzy Sets Syst. 298, 22–43 (2016)
46. 46.
Borgwardt, S., Peñaloza, R.: Algorithms for reasoning in very expressive description logics under infinitely valued Gödel semantics. Int. J. Approximate Reasoning 83, 60–101 (2017)
47. 47.
Cerami, M.: Fuzzy Description Logics from a Mathematical Fuzzy Logic Point of View. Ph.D. thesis, Universitat de Barcelona, Spain (2012)Google Scholar
48. 48.
Cerami, M., Esteva, F., Bou, F.: Decidability of a description logic over infinite-valued product logic. In: Proceedings of the 12th International Conference on Principles of Knowledge Representation and Reasoning (KR 2010), pp. 203–213 (2010)Google Scholar
49. 49.
Cerami, M., Straccia, U.: On the (un)decidability of fuzzy description logics under Łukasiewicz t-norm. Inf. Sci. 227, 1–21 (2013)
50. 50.
Ciaramella, A., Cimino, M.G.C.A., Marcelloni, F., Straccia, U.: Combining fuzzy logic and semantic web to enable situation-awareness in service recommendation. In: Bringas, P.G., Hameurlain, A., Quirchmayr, G. (eds.) DEXA 2010. LNCS, vol. 6261, pp. 31–45. Springer, Heidelberg (2010). doi:
51. 51.
Cintula, P., Hájek, P., Noguera, C. (eds.): Handbook of Mathematical Fuzzy Logic, vol. 37–38. College Publications (2011)Google Scholar
52. 52.
Dasiopoulou, S., Kompatsiaris, I., Strintzis, M.G.: Applying fuzzy DLs in the extraction of image semantics. In: Spaccapietra, S., Delcambre, L. (eds.) Journal on Data Semantics XIV. LNCS, vol. 5880, pp. 105–132. Springer, Heidelberg (2009). doi:
53. 53.
Di Noia, T., Mongiello, M., Straccia, U.: Fuzzy description logics for component selection in software design. In: Bianculli, D., Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol. 9509, pp. 228–239. Springer, Heidelberg (2015). doi:
54. 54.
Díaz-Rodríguez, N., Cadahía, O., Cuéllar, M., Lilius, J., Calvo-Flores, M.: Handling real-world context awareness, uncertainty and vagueness in real-time human activity tracking and recognition with a fuzzy ontology-based hybrid method. Sensors 14(20), 18131–18171 (2014)
55. 55.
Dienes, Z.P.: On an implication function in many-valued systems of logic. J. Symbolic Logic 14(2), 95–97 (1949)
56. 56.
Dubois, D., Prade, H.: Possibilistic logic - an overview. In: Computational Logic, Handbook of the History of Logic, vol. 9, pp. 283–342. Elsevier (2014)Google Scholar
57. 57.
Gödel, K.: Zum intuitionistischen aussagenkalkül. Anzeiger der Akademie der Wissenschaften in Wien, vol. 69, pp. 286–295 (1932) (reprinted, Gödel 1986)Google Scholar
58. 58.
Goguen, J.A.: L-fuzzy sets. J. Math. Anal. Appl. 18(1), 145–174 (1967)
59. 59.
Haarslev, V., Pai, H.I., Shiri, N.: A formal framework for description logics with uncertainty. Int. J. Approximate Reasoning 50(9), 1399–1415 (2009)
60. 60.
Hájek, P.: Metamathematics of Fuzzy Logic (Trends in Logic). Springer, Netherlands (2001)Google Scholar
61. 61.
Hájek, P.: Making fuzzy description logic more general. Fuzzy Sets Syst. 154(1), 1–15 (2005)
62. 62.
Hájek, P.: On witnessed models in fuzzy logic. Math. Logic Q. 53(1), 66–77 (2007)
63. 63.
Hájek, P.: On witnessed models in fuzzy logic II. Math. Logic Q. 53(6), 610–615 (2007)
64. 64.
Hájek, P.: On witnessed models in fuzzy logic III - witnessed Gödel logics. Math. Logic Q. 56(2), 171–174 (2010)
65. 65.
Haniková, Z., Godo, L.: Petr Hájek, obituary. Fuzzy Sets Syst. (in Press, 2017)Google Scholar
66. 66.
Hölldobler, S., Nga, N.H., Khang, T.D.: The fuzzy description logic $$\cal{ALC}_{FLH}$$. In: Proceedings of the 9th IASTED International Conference on Artificial Intelligence and Soft Computing (ASC 2005), pp. 99–104 (2005)Google Scholar
67. 67.
Kang, D., Xu, B., Lu, J., Li, Y.: Reasoning for a fuzzy description logic with comparison expressions. In: Proceedings of the 19th International Workshop on Description Logics (DL 2006), pp. 111–118 (2006)Google Scholar
68. 68.
Kleene, S.C.: Introduction to Metamathematics. Van Nostrand, New York (1952)
69. 69.
Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Springer, Netherlands (2000)
70. 70.
Kułacka, A., Pattinson, D., Schröder, L.: Syntactic labelled tableaux for Łukasiewicz fuzzy $$\cal{ALC}$$. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI 2013), pp. 762–768 (2013)Google Scholar
71. 71.
Lisi, F.A., Straccia, U.: A FOIL-like method for learning under incompleteness and vagueness. In: Zaverucha, G., Santos Costa, V., Paes, A. (eds.) ILP 2013. LNCS, vol. 8812, pp. 123–139. Springer, Heidelberg (2014). doi: Google Scholar
72. 72.
Lu, J., Kang, D., Zhang, Y., Li, Y., Zhou, B.: A family of fuzzy description logics with comparison expressions. In: Wang, G., Li, T., Grzymala-Busse, J.W., Miao, D., Skowron, A., Yao, Y. (eds.) RSKT 2008. LNCS, vol. 5009, pp. 395–402. Springer, Heidelberg (2008). doi:
73. 73.
Łukasiewicz, J.: O logice trójwartościowej. Ruch filozoficzny 5, 170–171 (1920)Google Scholar
74. 74.
Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description logics for the semantic web. J. Web Semant. 6(4), 291–308 (2008)
75. 75.
Mailis, T., Peñaloza, R., Turhan, A.-Y.: Conjunctive query answering in finitely-valued fuzzy description logics. In: Kontchakov, R., Mugnier, M.-L. (eds.) RR 2014. LNCS, vol. 8741, pp. 124–139. Springer, Cham (2014). doi: Google Scholar
76. 76.
Mailis, T., Stoilos, G., Simou, N., Stamou, G.B., Kollias, S.: Tractable reasoning with vague knowledge using fuzzy $$\cal{EL}^{++}$$. J. Intell. Inf. Syst. 39(2), 399–440 (2012)
77. 77.
Mailis, T., Stoilos, G., Stamou, G.: Expressive reasoning with Horn rules and fuzzy description logics. Knowl. Inf. Syst. 25(1), 105–136 (2010)
78. 78.
Mailis, T., Turhan, A.Y.: Employing $${DL-Lite}_R$$-reasoners for fuzzy query answering. In: Proceedings of the 4th Joint International Semantic Technology Conference (JIST 2014), pp. 63–78 (2014)Google Scholar
79. 79.
Meghini, C., Sebastiani, F., Straccia, U.: A model of multimedia information retrieval. J. ACM 48(5), 909–970 (2001)
80. 80.
Merz, D., Peñaloza, R., Turhan, A.: Reasoning in $$\cal{ALC}$$ with fuzzy concrete domains. In: Proceedings of the 37th German Conference on Artificial Intelligence (KI 2014), pp. 171–182 (2014)Google Scholar
81. 81.
Molitor, R., Tresp, C.B.: Extending description logics to vague knowledge in medicine. In: Fuzzy Systems in Medicine, pp. 617–635 (2000)Google Scholar
82. 82.
Mostert, P.S., Shields, A.L.: On the structure of semigroups on a compact manifold with boundary. Ann. Math. 65(1), 117–143 (1957)
83. 83.
Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28(1), 71–88 (1986)
84. 84.
Pan, J.Z., Stamou, G.B., Stoilos, G., Taylor, S., Thomas, E.: Scalable querying services over fuzzy ontologies. In: Proceedings of the 17th International World Wide Web Conference (WWW 2008), pp. 575–584 (2008)Google Scholar
85. 85.
Sánchez, D., Tettamanzi, A.G.B.: Fuzzy quantification in fuzzy description logics. In: Fuzzy Logic and the Semantic Web, vol. 1, chap. 8, pp. 135–159 (2006)Google Scholar
86. 86.
Stoilos, G., Simou, N., Stamou, G., Kollias, S.: Uncertainty and the semantic web. IEEE Intell. Syst. 21(5), 84–87 (2006)
87. 87.
Stoilos, G., Stamou, G.B.: A framework for reasoning with expressive continuous fuzzy description logics. In: Proceedings of the 22nd International Workshop on Description Logics (DL 2009) (2009)Google Scholar
88. 88.
Stoilos, G., Stamou, G.B.: Reasoning with fuzzy extensions of OWL and OWL 2. Knowl. Inf. Syst. 40(1), 205–242 (2014)
89. 89.
Stoilos, G., Stamou, G.B., Kollias, S.D.: Reasoning with qualified cardinality restrictions in fuzzy description logics. In: Proceedings of the 2008 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2008), pp. 637–644 (2008)Google Scholar
90. 90.
Stoilos, G., Stamou, G.B., Pan, J.Z.: Classifying fuzzy subsumption in fuzzy-$$\cal{EL}$$+. In: Proceedings of the 21st International Workshop on Description Logics (DL 2008) (2008)Google Scholar
91. 91.
Stoilos, G., Stamou, G.B., Pan, J.Z.: Fuzzy extensions of OWL: logical properties and reduction to fuzzy description logics. Int. J. Approximate Reasoning 51(6), 656–679 (2010)
92. 92.
Stoilos, G., Stamou, G.B., Pan, J.Z., Tzouvaras, V., Horrocks, I.: Reasoning with very expressive fuzzy description logics. J. Artif. Intell. Res. 30, 273–320 (2007)
93. 93.
Stoilos, G., Straccia, U., Stamou, G.B., Pan, J.Z.: General concept inclusions in fuzzy description logics. In: Proceedings of the 17th European Confernce on Artificial Intelligence (ECAI 2006), pp. 457–461 (2006)Google Scholar
94. 94.
Stoilos, G., Venetis, T., Stamou, G.: A fuzzy extension to the OWL 2 RL ontology language. Comput. J. 58(11), 2956–2971 (2015)
95. 95.
Straccia, U.: A fuzzy description logic. In: Proceedings of the 15th National Confernce on Artificial Intelligence (AAAI 1998), pp. 594–599 (1998)Google Scholar
96. 96.
Straccia, U.: Reasoning within fuzzy description logics. J. Artif. Intell. Res. 14, 137–166 (2001)
97. 97.
Straccia, U.: Transforming fuzzy description logics into classical description logics. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS, vol. 3229, pp. 385–399. Springer, Heidelberg (2004). doi:
98. 98.
Straccia, U.: Description logics with fuzzy concrete domains. In: Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence (UAI 2005), pp. 559–567 (2005)Google Scholar
99. 99.
Straccia, U.: Answering vague queries in fuzzy DL-Lite. In: Proceedings of the 11th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2006), pp. 2238–2245 (2006)Google Scholar
100. 100.
Straccia, U.: Description logics over lattices. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 14(1), 1–16 (2006)
101. 101.
Straccia, U.: An ontology mediated multimedia information retrieval system. In: Proceedings of the 40th IEEE International Symposium on Multiple-Valued Logic (ISMVL 2010), pp. 319–324 (2010)Google Scholar
102. 102.
Straccia, U.: Foundations of Fuzzy Logic and Semantic Web Languages. CRC Studies in Informatics, Chapman & Hall (2013)Google Scholar
103. 103.
Straccia, U., Bobillo, F.: Mixed integer programming, general concept inclusions and fuzzy description logics. In: Proceedings of the 5th EUSFLAT Conference (EUSFLAT 2007), pp. 213–220 (2007)Google Scholar
104. 104.
Straccia, U., Bobillo, F.: Mixed integer programming, general concept inclusions and fuzzy description logics. Mathware & Soft Comput. 14(3), 247–259 (2007)
105. 105.
Straccia, U., Mucci, M.: pFOIL-DL: Learning (fuzzy) EL concept descriptions from crisp OWL data using a probabilistic ensemble estimation. In: Proceedings of the 30th Annual ACM Symposium on Applied Computing (SAC 2015), pp. 345–352 (2015)Google Scholar
106. 106.
Tresp, C.B., Molitor, R.: A description logic for vague knowledge. In: Proceedings of the 13th European Conference on Artificial Intelligence (ECAI 1998), pp. 361–365 (1998)Google Scholar
107. 107.
Tsatsou, D., Dasiopoulou, S., Kompatsiaris, I., Mezaris, V.: LiFR: a lightweight fuzzy DL reasoner. In: Presutti, V., Blomqvist, E., Troncy, R., Sack, H., Papadakis, I., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8798, pp. 263–267. Springer, Cham (2014). doi: Google Scholar
108. 108.
Venetis, T., Stoilos, G., Stamou, G., Kollias, S.: f-DLPs: Extending description logic programs with fuzzy sets and fuzzy logic. In: Proceedings of the 2007 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2007), pp. 1–6 (2007)Google Scholar
109. 109.
Vojtáš, P.: A fuzzy EL description logic with crisp roles and fuzzy aggregation for web consulting. In: Proceedings of the 11th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2006), pp. 1834–1841 (2006)Google Scholar
110. 110.
Yen, J.: Generalizing term subsumption languages to fuzzy logic. In: Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI 1991), pp. 472–477 (1991)Google Scholar
111. 111.
Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
112. 112.
Zadeh, L.A.: A fuzzy-set-theoretic interpretation of linguistic hedges. J. Cybern. 2(3), 4–34 (1972)