Handling Topical Metadata Regarding the Validity and Completeness of Multiple-Source Information: A Possibilistic Approach

  • Célia da Costa Pereira
  • Didier Dubois
  • Henri Prade
  • Andrea G. B. TettamanziEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10564)


We study the problem of aggregating metadata about the validity and/or completeness, with respect to given topics, of information provided by multiple sources. For a given topic, the validity level reflects the certainty that the information stored is true. The completeness level of a source on a given topic reflects the certainty that a piece of information that is not stored is false. We propose a modeling based on possibility theory which allows the fusion of such multi-source information into a graded belief base.


Basic Beliefs Possibility Theory Belief Merge Provenance Calculus Possibility Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abiteboul, S., Bourhis, P., Vianu, V.: A formal study of collaborative access control in distributed datalog. In: ICDT. LIPIcs, vol. 48, pp. 10:1–10:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)Google Scholar
  2. 2.
    Assaghir, Z., Napoli, A., Kaytoue, M., Dubois, D., Prade, H.: Numerical information fusion: lattice of answers with supporting arguments. In: ICTAI, pp. 621–628. IEEE Computer Society (2011)Google Scholar
  3. 3.
    Bacchus, F., Grove, A.J., Halpern, J.Y., Koller, D.: From statistical knowledge bases to degrees of belief. Artif. Intell. 87(1–2), 75–143 (1996)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Belhadi, A., Dubois, D., Khellaf-Haned, F., Prade, H.: Multiple agent possibilistic logic. J. Appl. Non-Class. Logics 23(4), 299–320 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bernays, P., Schönfinkel, M.: Zum Entscheidungsproblem der mathematischen Logik. Math. Ann. 99, 342–372 (1928)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cholvy, L.: Collecting information reported by imperfect information sources. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds.) IPMU 2012. CCIS, vol. 299, pp. 501–510. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31718-7_52 CrossRefGoogle Scholar
  7. 7.
    Cholvy, L., Demolombe, R., Jones, A.: Reasoning about the safety of information: from logical formalization to operational definition. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1994. LNCS, vol. 869, pp. 488–499. Springer, Heidelberg (1994). doi: 10.1007/3-540-58495-1_49 CrossRefGoogle Scholar
  8. 8.
    Demolombe, R.: Answering queries about validity and completeness of data: from modal logic to relational algebra. In: FQAS. Datalogiske Skrifter (Writings on Computer Science), vol. 62, pp. 265–276. Roskilde University (1996)Google Scholar
  9. 9.
    Dubois, D., Lang, J., Prade, H.: Dealing with multi-source information in possibilistic logic. In: ECAI, pp. 38–42 (1992)Google Scholar
  10. 10.
    Dubois, D., Lang, J., Prade, H.: Possibilistic logic. In: Handbook of Logic in Artificial Intelligence and Logic Programming (vol. 3): Nonmonotonic Reasoning and Uncertain Reasoning, NY, USA, pp. 439–513. Oxford University Press, New York (1994)Google Scholar
  11. 11.
    Dubois, D., Prade, H.: Possibility Theory–An Approach to Computerized Processing of Uncertainty. Plenum Press, New York (1988)zbMATHGoogle Scholar
  12. 12.
    Dubois, D., Prade, H.: Valid or complete information in databases —a possibility theory-based analysis—. In: Hameurlain, A., Tjoa, A.M. (eds.) DEXA 1997. LNCS, vol. 1308, pp. 603–612. Springer, Heidelberg (1997). doi: 10.1007/BFb0022068 CrossRefGoogle Scholar
  13. 13.
    Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: Libkin, L. (ed.) Proceedings of 26th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, Beijing, 11–13 June, pp. 31–40. ACM (2007)Google Scholar
  14. 14.
    Lang, J.: Possibilistic logic: complexity and algorithms. In: Kohlas, J., Moral, S. (eds.) Algorithms for Uncertainty and Defeasible Reasoning, pp. 179–220. Gabbay, D.M., Smets, Ph. (eds.) vol. 5. Handbook of Defeasible Reasoning and Uncertainty Management Systems. Kluwer Acad. Publ., Dordrecht (2001)Google Scholar
  15. 15.
    Lewis, H.R.: Complexity results for classes of quantificational formulas. J. Comput. Syst. Sci. 21, 317–353 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Marsh, S.P.: Formalising Trust as a Computational Concept. Ph.D. thesis, Department of Computing Science and Mathematics University of Stirling (1994)Google Scholar
  17. 17.
    Motro, A.: Integrity = validity + completeness. ACM Trans. Database Syst. 14(4), 480–502 (1989)CrossRefGoogle Scholar
  18. 18.
    Pivert, O., Prade, H.: Possibilistic conditional tables. In: Gyssens, M., Simari, G. (eds.) FoIKS 2016. LNCS, vol. 9616, pp. 42–61. Springer, Cham (2016). doi: 10.1007/978-3-319-30024-5_3 CrossRefGoogle Scholar
  19. 19.
    Schwitzgebel, E.: Belief. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Stanford University (Fall 2008),
  20. 20.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefzbMATHGoogle Scholar
  21. 21.
    Zadeh, L.A.: A theory of approximate reasoning. In: Hayes, J.E., Mitchie, D., Mikulich, L.I. (eds.) Machine intelligence, vol. 9, pp. 149–194. Halstead Press, New York (1979)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Célia da Costa Pereira
    • 1
  • Didier Dubois
    • 2
  • Henri Prade
    • 2
  • Andrea G. B. Tettamanzi
    • 1
    Email author
  1. 1.Université Côte d’Azur, CNRS, I3SSophia AntipolisFrance
  2. 2.IRIT – CNRSToulouseFrance

Personalised recommendations