Advertisement

Towards Statistical Reasoning in Description Logics over Finite Domains

  • Rafael PeñalozaEmail author
  • Nico Potyka
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10564)

Abstract

We present a probabilistic extension of the description logic \(\mathcal {ALC}\) for reasoning about statistical knowledge. We consider conditional statements over proportions of the domain and are interested in the probabilistic-logical consequences of these proportions. After introducing some general reasoning problems and analyzing their properties, we present first algorithms and complexity results for reasoning in some fragments of Statistical \(\mathcal {ALC}\).

References

  1. 1.
    Baader, F., Brandt, S., Lutz, C.: Pushing the \(\cal{EL}\) envelope. In: Kaelbling, L.P., Saffiotti, A. (eds.) Proceedings of IJCAI 2005, pp. 364–369. Morgan-Kaufmann (2005)Google Scholar
  2. 2.
    Beierle, C., Kern-Isberner, G., Finthammer, M., Potyka, N.: Extending and completing probabilistic knowledge and beliefs without bias. KI-Künstliche Intelligenz 29(3), 255–262 (2015)CrossRefGoogle Scholar
  3. 3.
    Ceylan, İ.İ., Peñaloza, R.: The bayesian ontology language \(\cal{BEL.}\) J. Autom. Reasoning 58(1), 67–95 (2017)Google Scholar
  4. 4.
    Grove, A.J., Halpern, J.Y., Koller, D.: Random worlds and maximum entropy. In: Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science, 1992, LICS 1992, pp. 22–33. IEEE (1992)Google Scholar
  5. 5.
    Halpern, J.Y.: An analysis of first-order logics of probability. Artif. Intell. 46(3), 311–350 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Hansen, P., Jaumard, B.: Probabilistic satisfiability. In: Kohlas, J., Moral, S. (eds.) Handbook of Defeasible Reasoning and Uncertainty Management Systems, vol. 5, pp. 321–367. Springer, Netherlands (2000)CrossRefGoogle Scholar
  7. 7.
    Klinov, P., Parsia, B.: Pronto: a practical probabilistic description logic reasoner. In: Bobillo, F., Costa, P.C.G., d’Amato, C., Fanizzi, N., Laskey, K.B., Laskey, K.J., Lukasiewicz, T., Nickles, M., Pool, M. (eds.) UniDL/URSW 2008-2010. LNCS, vol. 7123, pp. 59–79. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-35975-0_4 CrossRefGoogle Scholar
  8. 8.
    Koller, D., Levy, A., Pfeffer, A.: P-classic: a tractable probablistic description logic. AAAI/IAAI 1997, 390–397 (1997)Google Scholar
  9. 9.
    Lukasiewicz, T.: Probabilistic logic programming with conditional constraints. ACM Trans. Comput. Logic 2(3), 289–339 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description logics for the semantic web. JWS 6(4), 291–308 (2008)CrossRefGoogle Scholar
  11. 11.
    Lutz, C., Schröder, L.: Probabilistic description logics for subjective uncertainty. In: Proceedings of KR 2010. AAAI Press (2010)Google Scholar
  12. 12.
    Niepert, M., Noessner, J., Stuckenschmidt, H.: Log-linear description logics. In: IJCAI, pp. 2153–2158 (2011)Google Scholar
  13. 13.
    Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28, 71–88 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Paris, J.B.: The Uncertain Reasoner’s Companion - A Mathematical Perspective. Cambridge University Press, Cambridge (1994)zbMATHGoogle Scholar
  15. 15.
    Peñaloza, R., Potyka, N.: Probabilistic reasoning in the description logic \(\cal{ALCP}\) with the principle of maximum entropy. In: Schockaert, S., Senellart, P. (eds.) SUM 2016. LNCS, vol. 9858, pp. 246–259. Springer, Cham (2016). doi: 10.1007/978-3-319-45856-4_17 CrossRefGoogle Scholar
  16. 16.
    Peñaloza, R., Potyka, N.: Towards statistical reasoning in description logics over finite domains (full version). CoRR abs/1706.03207 (2017). http://arxiv.org/abs/1706.03207
  17. 17.
    Potyka, N., Thimm, M.: Probabilistic reasoning with inconsistent beliefs using inconsistency measures. In: IJCAI, pp. 3156–3163 (2015)Google Scholar
  18. 18.
    Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Probabilistic description logics under the distribution semantics. Semant. Web 6(5), 477–501 (2015)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.KRDB Research CentreFree University of Bozen-BolzanoBolzanoItaly
  2. 2.University of OsnabrückOsnabrückGermany

Personalised recommendations