Oncolytic Virotherapy and the Tumor Microenvironment

  • Sara E. Berkey
  • Steve H. Thorne
  • David L. Bartlett
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1036)


Oncolytic viral therapy is a promising approach to treat many malignancies, including breast, colorectal, hepatocellular, and melanoma. The best results are seen when using “targeted and armed” viruses. These are viruses that have been genetically modified to selectively replicate within cancer cells and express specific transgenes that alter the tumor microenvironment to inhibit tumor progression. The products of these transgenes induce cell death, make the virus less virulent, compromise tumor vascularity, and are capable of modulating or enhancing the immune system—such as cytokines and chemokines. In addition, oncolytic viruses can induce anti-vascular effects and disrupt the extracellular matrix to improve viral spread within the tumor. Oncolytic viruses also improve crosstalk between fibroblasts, cytokine-induced killer cells, and cancer cells within the microenvironment, leading to enhanced tumor cell death.


Oncolytic virus Immune activation Cytokine expression Vascular inhibition Extracellular matrix 


  1. 1.
    Sampath P, Thorne SH. Novel therapeutic strategies in human malignancy: combining immunotherapy and oncolytic virotherapy. Oncolytic Virother. 2015;4:75–82.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Guo ZH, Thorne SH, Barlett DL. Oncolytic virotherapy: molecular targets in tumor-selective replication and carrier cell-mediated delivery of oncolytic viruses. Biochim Biophys Acta. 2008;1785(2):217–31.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Kirn DH, Thorne SH. Targeted and armed oncolytic poxviruses: a novel multi-mechanistic therapeutic class for cancer. Nat Rev Cancer. 2009;9(1):64–71.CrossRefPubMedGoogle Scholar
  4. 4.
    Guo ZS, Liu Z, Bartlett DL. Oncolytic immunotherapy: dying the right way is a key to eliciting potent antitumor immunity. Front Oncol. 2014;4:74.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Miyamoto S, Inoue H, Nakamura T, et al. Coxsackievirus B3 is an oncolytic virus with immunostimulatory properties that is active against lung adenocarcinoma. Cancer Res. 2012;72:2609–21.CrossRefPubMedGoogle Scholar
  6. 6.
    Donnelly OG, Errington-Mais F, Steele L, et al. Measles virus causes immunogenic cell death in human melanoma. Gene Ther. 2013;20:7–15.CrossRefPubMedGoogle Scholar
  7. 7.
    Guo ZS, Naik A, O’Malley ME, et al. The enhanced tumor selectivity of an oncolytic vaccinia lacking the host range and antiapoptosis genes SPI-1 and SPI-2. Cancer Res. 2005;65:9991–8.CrossRefPubMedGoogle Scholar
  8. 8.
    John LB, Howland LJ, Flynn JK, et al. Oncolytic virus and anti-4-1BB combination therapy elicits strong anti-tumor immunity against established cancer. Cancer Res. 2012;72:1651–60.CrossRefPubMedGoogle Scholar
  9. 9.
    Whilding LM, Archibald KM, Kulbe H, et al. Vaccinia virus induces programmed necrosis in ovarian cancer cells. Mol Ther. 2013;21:2074–86.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Angelova AL, Grekova SP, Heller A, et al. Complementary induction of immunogenic cell death by oncolytic parvovirus H-1PV and gemcitabine in pancreatic cancer. J Virol. 2014;88(10):5263–76.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Liikanen I, Ahtiainen L, Hirvinen ML, et al. Oncolytic adenovirus with temozolomide induces autophagy and antitumor immune responses in cancer patients. Mol Ther. 2013;21:1212–23.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Endo Y, Sakai R, Ouchi M, et al. Virus-mediated oncolysis induces danger signal and stimulates cytotoxic T-lymphocyte activity via proteasome activator upregulation. Oncogene. 2008;27:2375–81.CrossRefPubMedGoogle Scholar
  13. 13.
    Moehler M, Zeidler M, Schede J, et al. Oncolytic parvovirus H1 induces release of heat-shock protein HSP72 in susceptible human tumor cells but may not affect primary immune cells. Cancer Gene Ther. 2003;10:477–80.CrossRefPubMedGoogle Scholar
  14. 14.
    Grekova S, Aprahamian M, Giese N, et al. Immune cells participate in the oncosuppressive activity of parvovirus H-1PV and are activated as a result of their abortive infection with this agent. Cancer Biol Ther. 2010;10:1280–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Grekova SP, Raykov Z, Zawatzky R, et al. Activation of a glioma-specific immune response by oncolytic parvovirus minute virus of mice infection. Cancer Gene Ther. 2012;19:468–75.CrossRefPubMedGoogle Scholar
  16. 16.
    Radic M, Marion T, Monestier M. Nucleosomes are exposed at the cell surface in apoptosis. J Immunol. 2004;172:6692–700.CrossRefPubMedGoogle Scholar
  17. 17.
    Uratsuji H, Tada Y, Kawashima T, et al. P2Y6 receptor signaling pathway mediates inflammatory responses induced by monosodium urate crystals. J Immunol. 2012;188:436–44.CrossRefPubMedGoogle Scholar
  18. 18.
    Elankumaran S, Rockemann D, Samal SK. Newcastle disease virus exerts oncolysis by both intrinsic and extrinsic caspase-dependent pathways of cell death. J Virol. 2006;80:7522–34.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Meng C, Zhou Z, Jiang K, Yu S, Jia L, Wu Y, et al. Newcastle disease virus triggers autophagy in U251 glioma cells to enhance virus replication. Arch Virol. 2012;157:1011–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Washburn B, Schirrmacher V. Human tumor cell infection by Newcastle disease virus leads to upregulation of HLA and cell adhesion molecules and to induction of interferons, chemokines and finally apoptosis. Int J Oncol. 2002;21:85–93.PubMedGoogle Scholar
  21. 21.
    Fournier P, Arnold A, Wilden H, Schirrmacher V. Newcastle disease virus induces pro-inflammatory conditions and type I interferon for counter-acting Treg activity. Int J Oncol. 2012;40:840–50.PubMedGoogle Scholar
  22. 22.
    Zamarin D, Holmgaard RB, Subudhi SK, et al. Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci Transl Med. 2014;6:226–32.CrossRefGoogle Scholar
  23. 23.
    Errington F, Steele L, Prestwich R, et al. Reovirus activates human dendritic cells to promote innate antitumor immunity. J Immunol. 2008;180:6018–26.CrossRefPubMedGoogle Scholar
  24. 24.
    Diaconu I, Cerullo V, Hirvinen ML, et al. Immune response is an important aspect of the antitumor effect produced by a CD40L-encoding oncolytic adenovirus. Cancer Res. 2012;72:2327–38.CrossRefPubMedGoogle Scholar
  25. 25.
    Workenhe ST, Simmons G, Pol JG, et al. Immunogenic HSV-mediated oncolysis shapes the antitumor immune response and contributes to therapeutic efficacy. Mol Ther. 2014;22:123–31.CrossRefPubMedGoogle Scholar
  26. 26.
    Borde C, Barnay-Verdier S, Gaillard C, et al. Stepwise release of biologically active HMGB1 during HSV-2 infection. PLoS One. 2011;6:e16145. Scholar
  27. 27.
    Workenhe ST, Pol JG, Lichty BD, et al. Combining oncolytic HSV-1 with immunogenic cell death-inducing drug mitoxantrone breaks cancer immune tolerance and improves therapeutic efficacy. Cancer Immunol Res. 2013;1:309–19.CrossRefPubMedGoogle Scholar
  28. 28.
    Worschech A, Haddad D, Stroncek DF, et al. The immunological aspects of poxvirus oncolytic therapy. Cancer Immunol Immunother. 2009;58(9):1355–62.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Prestwich RJ, Errington F, Diaz RM, et al. The case of oncolytic viruses versus the immune system: waiting on the judgment of Solomon. Hum Gene Ther. 2009;20(10):1119–32.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Bartlett DL, Liu Z, Sathaiah M, et al. Oncolytic viruses as therapeutic cancer vaccines. Mol Cancer. 2013;12:103.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kim JH, Oh JY, Park BH, et al. Systemic armed oncolytic and immunologic therapy for cancer with JX-594, a targeted poxvirus expressing GM-CSF. Mol Ther. 2006;14(3):361–70.CrossRefPubMedGoogle Scholar
  32. 32.
    Thorne SH. Immunotherapeutic potential of oncolytic vaccinia virus. Immunol Res. 2011;50(23):286–93.CrossRefPubMedGoogle Scholar
  33. 33.
    Kirn DH, Wang Y, Le Boeuf F, et al. Targeting of interferon-beta to produce a specific, multi-mechanistic oncolytic vaccinia virus. PLoS Med. 2007;4(12):2001–12.CrossRefGoogle Scholar
  34. 34.
    Grigg P, Titong A, Jones LA, et al. Safety mechanism assisted by the repressor of tetracycline (SMART) vaccinia virus vectors for vaccines and therapeutics. Proc Natl Acad Sci U S A. 2013;110(38):15407–12.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Chen H, Sampath P, Hou W, Thorne SH. Regulating Cytokine Function Enhances Safety and Activity of Genetic Cancer Therapies. Mol Ther. 2013;21(1):167–74.CrossRefPubMedGoogle Scholar
  36. 36.
    Li J, O’Malley M, Urban J, et al. Chemokine expression from oncolytic vaccinia virus enhances vaccine therapies of cancer. Mol Ther. 2011;19(4):650–7.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Wang LC, Lynn RC, Cheng G, et al. Treating tumors with a vaccinia virus expressing IFN-β illustrates the complex relationships between oncolytic ability and immunogenicity. Mol Ther. 2012;20(4):736–48.CrossRefPubMedGoogle Scholar
  38. 38.
    Cerullo V, Diaconu I, Romano V, et al. An oncolytic adenovirus enhanced for toll-like receptor 9 stimulation increases antitumor immune responses and tumor clearance. Mol Ther. 2012;20(11):2076–86.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Albelda SM, Thorne SH. Giving oncolytic vaccinia virus more BiTE. Mol Ther. 2014;22(1):6–8.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Gil M, Komorowski MP, Seshadri M, et al. CXCL12/CXCR4 blockade by oncolytic virotherapy inhibits ovarian cancer growth by decreasing immunosuppression and targeting cancer-initiating cells. J Immunol. 2014;193(10):5327–37.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Dias JD, Hemminki O, Diaconu I, et al. Targeted cancer immunotherapy with oncolytic adenovirus coding for a fully human monoclonal antibody specific for CTLA-4. Gene Ther. 2012;19(10):988–98.CrossRefPubMedGoogle Scholar
  42. 42.
    Rojas JJ, Sampath P, Hou W, Thorne SH. Defining effective combinations of immune checkpoint blockade and oncolytic virotherapy. Clin Cancer Res. 2015;21(24):5543–51.Google Scholar
  43. 43.
    Wali A, Strayer DS. Infection with vaccinia virus alters regulation of cell cycle progression. DNA Cell Biol. 1999;18:837–43.CrossRefPubMedGoogle Scholar
  44. 44.
    Ottolino-Perry, K., Acuna, SA, Angarita, FA, et al. Oncolytic vaccinia virus synergizes with irinotecan in colorectal cancer. Mol Oncol. 2015;9(8):1539–52.
  45. 45.
    Huang B, Sikorski R, Kirn DH, Thorne SH. Synergistic anti-tumor effects between oncolytic vaccinia virus and paclitaxel are mediated by the IFN response and HMGB1. Gene Ther. 2011;18:164–72.CrossRefPubMedGoogle Scholar
  46. 46.
    Nishio N, Diaconu I, Liu H, et al. Armed oncolytic virus enhances immune functions of chimeric antigen receptor-modified T cells in solid tumors. Cancer Res. 2014;74(18):5195–205.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Melcher A, Paroto K, Rooney CM, Bell JC. Thunder and lightening: Immunotherapy and oncolytic viruses collide. Mol Ther. 2011;19(6):1008–16.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Sobol PT, Boudreau JE, Stephenson K, et al. Adaptive antiviral immunity is a determinant of the therapeutic success of oncolytic virotherapy. Mol Ther. 2011;19:335–44.CrossRefPubMedGoogle Scholar
  49. 49.
    Benencia F, Courrèges MC, Fraser NW, Coukos G. Herpes virus oncolytic therapy reverses tumor immune dysfunction and facilitates tumor antigen presentation. Cancer Biol Ther. 2008;7:1194–205.CrossRefPubMedGoogle Scholar
  50. 50.
    Benencia F, Courrèges MC, Conejo-García JR, et al. HSV oncolytic therapy upregulates interferon-inducible chemokines and recruits immune effector cells in ovarian cancer. Mol Ther. 2005;12:789–802.CrossRefPubMedGoogle Scholar
  51. 51.
    Todo T, Martuza RL, Rabkin SD, Johnson PA. Oncolytic herpes simplex virus vector with enhanced MHC class I presentation and tumor cell killing. Proc Natl Acad Sci U S A. 2001;98:6396–401.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Li H, Dutuor A, Tao L, et al. Virotherapy with a type 2 herpes simplex virus-derived oncolytic virus induces potent antitumor immunity against neuroblastoma. Clin Cancer Res. 2007;13:316–22.CrossRefPubMedGoogle Scholar
  53. 53.
    Li H, Dutuor A, Fu X, Zhang X. Induction of strong antitumor immunity by an HSV-2-based oncolytic virus in a murine mammary tumor model. J Gene Med. 2007;9:161–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Endo T, Toda M, Watanabe M, Iizuka Y, Kubota T, Kitajima M, et al. In situ cancer vaccination with a replication-conditional HSV for the treatment of liver metastasis of colon cancer. Cancer Gene Ther. 2002;9:142–8.CrossRefPubMedGoogle Scholar
  55. 55.
    Toda M, Rabkin SD, Kojima H, Martuza RL. Herpes simplex virus as an in situ cancer vaccine for the induction of specific anti-tumor immunity. Hum Gene Ther. 1999;10:385–93.CrossRefPubMedGoogle Scholar
  56. 56.
    Toda M, Iizuka Y, Kawase T, Uyemura K, Kawakami Y. Immuno-viral therapy of brain tumors by combination of viral therapy with cancer vaccination using a replication-conditional HSV. Cancer Gene Ther. 2002;9:356–64.CrossRefPubMedGoogle Scholar
  57. 57.
    Hu JC, Coffin RS, Davis CJ, et al. A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin Cancer Res. 2006;12:6737–47.CrossRefPubMedGoogle Scholar
  58. 58.
    Harrington KJ, Hingorani M, Tanay MA, et al. Phase I/II study of oncolytic HSV GM-CSF in combination with radiotherapy and cisplatin in untreated stage III/IV squamous cell cancer of the head and neck. Clin Cancer Res. 2010;16(15):4005.CrossRefPubMedGoogle Scholar
  59. 59.
    Prestwich RJ, Ilett EJ, Errington F, et al. Immune-mediated antitumor activity of reovirus is required for therapy and is independent of direct viral oncolysis and replication. Clin Cancer Res. 2009;15:4374–81.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    White CL, Twigger KR, Vidal L, et al. Characterization of the adaptive and innate immune response to intravenous oncolytic reovirus (Dearing type 3) during a phase I clinical trial. Gene Ther. 2008;15:911–20.CrossRefPubMedGoogle Scholar
  61. 61.
    Prestwich RJ, Errington F, Steele LP, et al. Reciprocal human dendritic cell-natural killer cell interactions induce antitumor activity following tumor cell infection by oncolytic reovirus. J Immunol. 2009;183:4312–21.CrossRefPubMedGoogle Scholar
  62. 62.
    Gauvrit A, Brandler S, Sapede-Peroz C, et al. Measles virus induces oncolysis of mesothelioma cells and allows dendritic cells to cross-prime tumor-specific CD8 response. Cancer Res. 2008;68:4882–92.CrossRefPubMedGoogle Scholar
  63. 63.
    Li H, Peng KW, Dingli D, et al. Oncolytic measles viruses encoding interferon beta and the thyroidal sodium iodide symporter gene for mesothelioma virotherapy. Cancer Gene Ther. 2010;17(8):550.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Heinzerling L, Künzi V, Oberholzer PA, et al. Oncolytic measles virus in cutaneous T-cell lymphomas mounts antitumor immune responses in vivo and targets interferon-resistant tumor cells. Blood. 2005;106:2287–94.CrossRefPubMedGoogle Scholar
  65. 65.
    Gürlevik E, Woller N, Strüver N, et al. Selectivity of oncolytic viral replication prevents antiviral immune response and toxicity, but does not improve antitumoral immunity. Mol Ther. 2010;18:1972–82.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Bristol JA, Zhu M, Ji H, et al. In vitro and in vivo activities of an oncolytic adenoviral vector designed to express GM-CSF. Mol Ther. 2003;7:755–64.CrossRefPubMedGoogle Scholar
  67. 67.
    Cerullo V, Pesonen S, Diaconu I, et al. Oncolytic adenovirus coding for granulocyte macrophage colony-stimulating factor induces antitumoral immunity in cancer patients. Cancer Res. 2010;70:4297–309.CrossRefPubMedGoogle Scholar
  68. 68.
    Mastrangelo MJ, Maguire HC Jr, Eisenlohr LC, et al. Intratumoral recombinant GM-CSF-encoding virus as gene therapy in patients with cutaneous melanoma. Cancer Gene Ther. 1999;6:409–22.CrossRefPubMedGoogle Scholar
  69. 69.
    Chuang CM, Monie A, Wu A, et al. Combination of viral oncolysis and tumor-specific immunity to control established tumors. Clin Cancer Res. 2009;15:4581–8.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Zhang YQ, Tsai YC, Monie A, et al. Enhancing the therapeutic effect against ovarian cancer through a combination of viral oncolysis and antigen-specific immunotherapy. Mol Ther. 2010;18:692–9.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Diaz RM, Galivo F, Kottke T, et al. Oncolytic immunovirotherapy for melanoma using vesicular stomatitis virus. Cancer Res. 2007;67:2840–8.CrossRefPubMedGoogle Scholar
  72. 72.
    Wongthida P, Diaz RM, Galivo F, et al. Type III IFN interleukin-28 mediates the antitumor efficacy of oncolytic virus VSV in immune-competent mouse models of cancer. Cancer Res. 2010;70:4539–49.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Galivo F, Diaz RM, Thanarajasingam U, et al. Interference of CD40L-mediated tumor immunotherapy by oncolytic vesicular stomatitis virus. Hum Gene Ther. 2010;21:439–50.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Willmon CL, Saloura V, Fridlender ZG, et al. Expression of IFN-beta enhances both efficacy and safety of oncolytic vesicular stomatitis virus for therapy of mesothelioma. Cancer Res. 2009;69:7713–20.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Bridle BW, Hanson S, Lichty BD. Combining oncolytic virotherapy and tumor vaccination. Cytokine Growth Factor Rev. 2010;21:143–8.CrossRefPubMedGoogle Scholar
  76. 76.
    Qiao J, Kottke T, Willmon C, et al. Purging metastases in lymphoid organs using a combination of antigen-nonspecific adoptive T cell therapy, oncolytic virotherapy and immunotherapy. Nat Med. 2008;14:37–44.CrossRefPubMedGoogle Scholar
  77. 77.
    Vigil A, Martinez O, Chua MA, García-Sastre A. Recombinant Newcastle disease virus as a vaccine vector for cancer therapy. Mol Ther. 2008;16:1883–90.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    de Gruijl TD, Janssen AB, van Beusechem VW. Arming oncolytic viruses to leverage antitumor immunity. Expert Opin Biol Ther. 2015;15(7):959–71.CrossRefPubMedGoogle Scholar
  79. 79.
    Breitbach CJ, Paterson JM, Lemay CG, et al. Targeted inflammation during oncolytic virus therapy severely compromises tumor blood flow. Mol Ther. 2007;15(9):1686–93.CrossRefPubMedGoogle Scholar
  80. 80.
    Breitbach CJ, Arulanandam R, De Silva N, et al. Oncolytic vaccinia virus disrupts tumor-associated vasculature in humans. Cancer Res. 2013;73(4):1265–75.CrossRefPubMedGoogle Scholar
  81. 81.
    Hou W, Chen H, Rojas J, et al. Oncolytic vaccinia virus demonstrates antiangiogenic effects mediated by targeting of VEGF. Int J Cancer. 2014;135(5):1238–46.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Choi IK, Shin H, Oh E, et al. Potent and long-term antiangiogenic efficacy mediated by FP3-expressing oncolytic adenovirus. Int J Cancer. 2015;137(9):2253–69.CrossRefPubMedGoogle Scholar
  83. 83.
    McKee TD, Grandi P, Mok W, et al. Degradation of fibrillary collagen in a human melanoma xenograft improves the efficiency of an oncolytic herpes simplex virus vector. Cancer Res. 2006;66(5):2509–13.CrossRefPubMedGoogle Scholar
  84. 84.
    Mok W, Boucher Y, Rk J. Matrix metalloproteinases-1 and -8 improve the distribution and efficacy of an oncolytic virus. Cancer Res. 2007;67(22):10664–8.CrossRefPubMedGoogle Scholar
  85. 85.
    Guedan S, Rojas JJ, Gros A, et al. Hyaluronidase expression by an oncolytic adenovirus enhances its intratumoral spread and suppresses tumor growth. Mol Ther. 2010;18(7):1275–83.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Kim JH, Lee YS, Kim H, et al. Relaxin expression from tumor-targeting adenoviruses and its intratumoral spread, apoptosis induction, and efficacy. J Natl Cancer Inst. 2006;98(20):1482–93.CrossRefPubMedGoogle Scholar
  87. 87.
    Montel V, Kleeman J, Agarwal D, et al. Altered metastatic behavior of human breast cancer cells after experimental manipulation of matrix metalloproteinase 8 gene expression. Cancer Res. 2004;64(5):1687–94.CrossRefPubMedGoogle Scholar
  88. 88.
    Ilkow CS, Marguerie M, Batenchuk C, et al. Reciprocal cellular cross-talk within the tumor microenvironment promotes oncolytic virus activity. Nat Med. 2015;21(5):530–6.CrossRefPubMedGoogle Scholar
  89. 89.
    Kirn DH, Wang Y, Liang W, et al. Enhancing poxvirus oncolytic effects through increased spread and immune evasion. Cancer Res. 2008;68:2071–5.CrossRefPubMedGoogle Scholar
  90. 90.
    Sampath P, Li J, Hou W, et al. Crosstalk between immune cell and oncolytic vaccinia therapy enhances tumor trafficking and antitumor effects. Mol Ther. 2013;21(3):620–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sara E. Berkey
    • 1
  • Steve H. Thorne
    • 1
    • 2
  • David L. Bartlett
    • 1
  1. 1.Department of SurgeryUniversity of PittsburghPittsburghUSA
  2. 2.Department of ImmunologyUniversity of PittsburghPittsburghUSA

Personalised recommendations