Advertisement

Towards Topological Correct Segmentation of Macular OCT from Cascaded FCNs

  • Yufan HeEmail author
  • Aaron Carass
  • Yeyi Yun
  • Can Zhao
  • Bruno M. Jedynak
  • Sharon D. Solomon
  • Shiv Saidha
  • Peter A. Calabresi
  • Jerry L. Prince
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10554)

Abstract

Optical coherence tomography (OCT) is used to produce high resolution depth images of the retina and is now the standard of care for in-vivo ophthalmological assessment. In particular, OCT is used to study the changes in layer thickness across various pathologies. The automated image analysis of these OCT images has primarily been performed with graph based methods. Despite the preeminence of graph based methods, deep learning based approaches have begun to appear within the literature. Unfortunately, they cannot currently guarantee the strict biological tissue order found in human retinas. We propose a cascaded fully convolutional network (FCN) framework to segment eight retina layers and preserve the topological relationships between the layers. The first FCN serves as a segmentation network which takes retina images as input and outputs the segmentation probability maps of the layers. We next perform a topology check on the segmentation and those patches that do not satisfy the topology criterion are passed to a second FCN for topology correction. The FCNs have been trained on Heidelberg Spectralis images and validated on both Heidelberg Spectralis and Zeiss Cirrus images.

Keywords

Retina OCT Fully convolutional network Topology preserving 

References

  1. 1.
    BenTaieb, A., Hamarneh, G.: Topology aware fully convolutional networks for histology gland segmentation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 460–468. Springer, Cham (2016). doi: 10.1007/978-3-319-46723-8_53 CrossRefGoogle Scholar
  2. 2.
    Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 5(99), 1 (2017)Google Scholar
  3. 3.
    Chiu, S.J., Li, X.T., Nicholas, P., Toth, C.A., Izatt, J.A., Farsiu, S.: Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Opt. Express 18(18), 19413–19428 (2010)CrossRefGoogle Scholar
  4. 4.
    Fang, L., Cunefare, D., Wang, C., Guymer, R.H., Li, S., Farsiu, S.: Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search. Biomed. Opt. Express 8(5), 2732–2744 (2017)CrossRefGoogle Scholar
  5. 5.
    Garvin, M.K., Abràmoff, M.D., Wu, X., Russell, S.R., Burns, T.L., Sonka, M.: Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images. IEEE Trans. Med. Imag. 28(9), 1436–1447 (2009)CrossRefGoogle Scholar
  6. 6.
    Hee, M.R., Izatt, J.A., Swanson, E.A., Huang, D., Schuman, J.S., Lin, C.P., Puliafito, C.A., Fujimoto, J.G.: Optical coherence tomography of the human retina. Arch. Ophthalmol. 113(3), 325–332 (1995)CrossRefGoogle Scholar
  7. 7.
    Lang, A., Carass, A., Hauser, M., Sotirchos, E.S., Calabresi, P.A., Ying, H.S., Prince, J.L.: Retinal layer segmentation of macular OCT images using boundary classification. Biomed. Opt. Express 4(7), 1133–1152 (2013)CrossRefGoogle Scholar
  8. 8.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440, June 2015Google Scholar
  9. 9.
    Medeiros, F.A., Zangwill, L.M., Alencar, L.M., Bowd, C., Sample, P.A., Susanna Jr., R., Weinreb, R.N.: Detection of glaucoma progression with stratus OCT retinal nerve fiber layer, optic nerve head, and macular thickness measurements. Invest. Ophthalmol. Vis. Sci. 50(12), 5741–5748 (2009)CrossRefGoogle Scholar
  10. 10.
    Novosel, J., Thepass, G., Lemij, H.G., de Boer, J.F., Vermeer, K.A., van Vliet, L.J.: Loosely coupled level sets for simultaneous 3D retinal layer segmentation in optical coherence tomography. Med. Image Anal. 26(1), 146–158 (2015)CrossRefGoogle Scholar
  11. 11.
    Ravishankar, H., Venkataramani, R., Thiruvenkadam, S., Sudhakar, P., Vaidya, V.: Learning and incorporating shape models for semantic segmentation. In: 20th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2017). LNCSc. Springer, Heidelberg (2017). https://www.researchgate.net/profile/Sheshadri_Thiruvenkadam/publication/314256462_Learning_and_incorporating_shape_models_for_semantic_segmentation/links/58be2ddc45851591c5e9c108/Learning-and-incorporating-shape-models-for-semantic-segmentation.pdf
  12. 12.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). doi: 10.1007/978-3-319-24574-4_28 CrossRefGoogle Scholar
  13. 13.
    Roy, A.G., Conjeti, S., Karri, S.P.K., Sheet, D., Katouzian, A., Wachinger, C., Navab, N.: ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional network. CoRR abs/1704.02161 (2017)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Yufan He
    • 1
    Email author
  • Aaron Carass
    • 1
    • 2
  • Yeyi Yun
    • 1
  • Can Zhao
    • 1
  • Bruno M. Jedynak
    • 3
  • Sharon D. Solomon
    • 4
  • Shiv Saidha
    • 5
  • Peter A. Calabresi
    • 5
  • Jerry L. Prince
    • 1
    • 2
  1. 1.Department of Electrical and Computer EngineeringThe Johns Hopkins UniversityBaltimoreUSA
  2. 2.Department of Computer ScienceThe Johns Hopkins UniversityBaltimoreUSA
  3. 3.Department of Mathematics and StatisticsPortland State UniversityPortlandUSA
  4. 4.Wilmer Eye InstituteThe Johns Hopkins University School of MedicineBaltimoreUSA
  5. 5.Department of NeurologyThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations