Advertisement

Deformable Multi-material 2-Simplex Surface Mesh for Intraoperative MRI-Ready Surgery Planning and Simulation, with Deep-Brain Stimulation Applications

  • T. Rashid
  • S. Sultana
  • G. S. Fischer
  • J. Pilitsis
  • M. A. AudetteEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10549)

Abstract

Printed and/or digital atlases are important tools for medical research and surgical intervention. While these atlases can provide guidance in identifying anatomical structures, they do not take into account the wide variations in the shape and size of anatomical structures that can occur from patient to patient. Accurate, patient-specific representations are especially important for surgical interventions like deep brain stimulation, where even small inaccuracies can result in dangerous complications. This research effort extends the discrete deformable 2-simplex mesh into the multi-material domain where geometry-based internal forces and image-based external forces are used in the deformation process. Multi-material 2-simplex meshes having shared boundaries are initialized from multi-material triangular surface meshes. A multi-material deformable framework is presented and used to segment anatomical structures of the deep brain region such as the subthalamic nucleus.

Keywords

Segmentation 2-Simplex mesh Multi-material Basal ganglia 

References

  1. 1.
    Delingette, H.: General object reconstruction based on simplex meshes. Int. J. Comput. Vis. 32, 111–146 (1999)CrossRefGoogle Scholar
  2. 2.
    Gilles, B., et al.: Musculoskeletal MRI segmentation using multiresolution simplex meshes with medial representations. Med. Image Anal. 14, 291–302 (2010)CrossRefGoogle Scholar
  3. 3.
    Haq, R., Cates, J., Besachio, D.A., Borgie, R.C., Audette, M.A.: Statistical shape model construction of lumbar vertebrae and intervertebral discs in segmentation for discectomy surgery simulation. In: Vrtovec, T., Yao, J., Glocker, B., Klinder, T., Frangi, A., Zheng, G., Li, S. (eds.) CSI 2015. LNCS, vol. 9402, pp. 85–96. Springer, Cham (2016). doi: 10.1007/978-3-319-41827-8_8 CrossRefGoogle Scholar
  4. 4.
    Rashid, T., Audette, M., et al.: 2-Manifold Surface Meshing Using Dual Contouring with Tetrahedral Decomposition. Adv. Eng. Softw. 106, 83–96 (2016)CrossRefGoogle Scholar
  5. 5.
    Wang, B.T., et al.: Generation and evaluation of an ultra-high-field atlas with applications in DBS planning. In: SPIE Medical Imaging: Image Processing, pp. 97840H–97840H-10 (2016)Google Scholar
  6. 6.
    Chakravarty, M.M., et al.: The creation of a brain atlas for image guided neurosurgery using serial histological data. Neuroimage 30, 359–376 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • T. Rashid
    • 1
  • S. Sultana
    • 1
  • G. S. Fischer
    • 2
  • J. Pilitsis
    • 3
  • M. A. Audette
    • 1
    Email author
  1. 1.Old Dominion UniversityNorfolkUSA
  2. 2.Worcester Polytechnic InstituteWorcesterUSA
  3. 3.Albany Medical CenterAlbanyUSA

Personalised recommendations