Biomass Burning Emissions Variation from Satellite-Derived Land Cover, Burned Area, and Emission Factors in Vietnam

Chapter
Part of the Springer Remote Sensing/Photogrammetry book series (SPRINGERREMO)

Abstract

Biomass burning emissions variation was calculated based on differences in satellite-derived products: MODIS and MERIS-based land cover, MODIS and MERIS-based burned area (BA), as well as global and regionally - averaged emission factors. The products and resulting emissions were compared for 3 years (2006–2008) in Vietnam. They were compared at four spatial scales including: (1) country level; (2) region level; (3) land cover; and (4) grid-cell level. For the different products, we especially focused on BA as it is the major input for emission calculations. The BA products were tested for differences using the mean absolute deviation (MAD), Average Absolute Deviation (AAD), and Student’s t-test for significance. Of the different regions, Central Highlands showed the highest AAD in BAs. At a country level, the MERIS BA amounts were relatively higher than the MODIS BAs and especially during peak biomass burning months. We also found that emissions calculations using MERIS LC were relatively lower than those from MODIS LC. While over croplands, the regional emission factors yielded notably higher emissions compared with the global emission factors suggesting that current large-scale studies may be underestimating the biomass burning emissions. We further addressed the potential impact of emissions on urban air quality in Hanoi City through HYSPLIT trajectory modeling.

Keywords

Biomass burning emissions MODIS MERIS Vietnam 

References

  1. Aalde H, Gonzalez P, Gytarsky M, Krug T, Kurz WA, Ogle S, Raison J, Schoene D, Ravindranath N, Elhassan NG (2006) Forest land. IPCC guidelines for national greenhouse gas inventories: agriculture, forestry and other land useGoogle Scholar
  2. Akagi SK, Yokelson RJ, Wiedinmyer C, Alvarado MJ, Reid JS, Karl T, Crounse JD, Wennberg PO (2011) Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos Chem Phys 11(9):4039–4072CrossRefGoogle Scholar
  3. Alonso-Canas I, Chuvieco E (2015) Global burned area mapping from ENVISAT-MERIS and MODIS active fire data. Remote Sens Environ 163:140–152CrossRefGoogle Scholar
  4. Andreae MO (1991) Biomass burning: its history, use, and distribution and its impact on environmental quality and global climate. In: Levine JS (ed) Global biomass burning: atmospheric, climatic and biospheric implications. MIT Press, Cambridge, pp 3–21Google Scholar
  5. Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Global Biogeochem Cycles 15(4):955–966CrossRefGoogle Scholar
  6. Arino O, Casadio S, Serpe D (2012) Global night-time fire season timing and fire count trends using the ATSR instrument series. Remote Sens Environ 116:226–238CrossRefGoogle Scholar
  7. Badarinath KVS, Kharol SK, Latha KM, Chand TR, Prasad VK, Jyothsna AN, Samatha K (2007) Multiyear ground-based and satellite observations of aerosol properties over a tropical urban area in India. Atmos Sci Lett 8(1):7–13CrossRefGoogle Scholar
  8. Badarinath KVS, Kharol SK, Krishna Prasad V, Kaskaoutis DG, Kambezidis HD (2008) Variation in aerosol properties over Hyderabad, India during intense cyclonic conditions. Int J Remote Sens 29(15):4575–4597CrossRefGoogle Scholar
  9. Badarinath KVS, Sharma AR, Kharol SK, Prasad VK (2009) Variations in CO, O3 and black carbon aerosol mass concentrations associated with planetary boundary layer (PBL) over tropical urban environment in India. J Atmos Chem 62(1):73–86CrossRefGoogle Scholar
  10. Bicheron P, Defourny P, Brockmann C, Schouten L, Vancutsem C, Huc M et al (2008) Globcover: products description and validation reportGoogle Scholar
  11. Biswas S, Vadrevu KP, Lwin ZM, Lasko K, Justice CO (2015) Factors controlling vegetation fires in protected and non-protected areas of Myanmar. PLoS One 10(4):e0124346CrossRefGoogle Scholar
  12. Bowman DM, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA et al (2009) Fire in the Earth system. Science 324(5926):481–484CrossRefGoogle Scholar
  13. Caballero GC, Gil IG, Bradley AV, Tansey KJ, Yue C, Mouillot F, Padilla M (2014) Fire_cci Product User Guide (PUG). http://www.esa-fire-cci.org/webfm_send/760
  14. Cao GL, Zhang XY, Wang YQ, Zheng FC (2008) Estimation of emissions from field burning of crop straw in China. Chin Sci Bull 53(5):784–790CrossRefGoogle Scholar
  15. Channan S, Collins K, Emanuel WR (2014) Global mosaics of the standard MODIS land cover type data. University of Maryland and the Pacific Northwest National Laboratory, College ParkGoogle Scholar
  16. Christian TJ, Kleiss B, Yokelson RJ, Holzinger R, Crutzen PJ, Hao WM et al (2003) Comprehensive laboratory measurements of biomass burning emissions: 1. Emissions from Indonesian, African, and other fuels. J Geophys Res Atmos 108(D23):4719Google Scholar
  17. Chuvieco E, Alonso-Canas I, Padilla M, & Ramo R (2014) Global mapping of burned areas from European satellites: the fire_cci project. Parte. http://hdl.handle.net/10316.2/34013
  18. Crutzen PJ, Andreae MO (1990) Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science 250(4988):1669–1678CrossRefGoogle Scholar
  19. Davies DK, Ilavajhala S, Wong MM, Justice CO (2009) Fire information for resource management system: archiving and distributing MODIS active fire data. IEEE Trans Geosci Remote Sens 47(1):72–79CrossRefGoogle Scholar
  20. de Jong W (2006) Forest rehabilitation in Vietnam: histories, realities, and future. CIFOR, BogorGoogle Scholar
  21. Defourny P, Vancutsem C, Bicheron P, Brockmann C, Nino F, Schouten L and Leroy M (2006) Globcover: a 300 m global land cover product for 2005 using ENVISAT MERIS time series. In Proceedings of the ISPRS commission VII mid-term symposium: remote sensing: from pixels to processesGoogle Scholar
  22. Duncan BN (2003) Interannual and seasonal variability of biomass burning emissions constrained by satellite observations. J Geophys Res 108(D2)Google Scholar
  23. Eva H, Lambin EF (1998) Remote sensing of biomass burning in tropical regions. Remote Sens Environ 64(3):292–315CrossRefGoogle Scholar
  24. Friedl MA, Sulla-Menashe D, Tan B, Schneider A, Ramankutty N, Sibley A, Huang X (2010) MODIS Collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens Environ 114(1):168–182CrossRefGoogle Scholar
  25. Gadde B, Bonnet S, Menke C, Garivait S (2009) Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines. Environ Pollut 157(5):1554–1558CrossRefGoogle Scholar
  26. Giglio L (2010) MODIS collection 5 active fire product user’s guide version 2.4. Science Systems and Applications, Inc.Google Scholar
  27. Giglio L, Descloitres J, Justice CO, Kaufman YJ (2003) An enhanced contextual fire detection algorithm for MODIS. Remote Sens Environ 87(2):273–282CrossRefGoogle Scholar
  28. Giglio L, van der Werf GR, Randerson JT, Collatz GJ, Kasibhatla P (2006) Global estimation of burned area using MODIS active fire observations. Atmos Chem Phys 6(4):957–974CrossRefGoogle Scholar
  29. Giglio L, Loboda T, Roy DP, Quayle B, Justice CO (2009) An active-fire based burned area mapping algorithm for the MODIS sensor. Remote Sens Environ 113(2):408–420CrossRefGoogle Scholar
  30. Giglio L, Randerson JT, Werf GR (2013) Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J Geophys Res Biogeo 118(1):317–328CrossRefGoogle Scholar
  31. Grégoire JM, Tansey K, Silva JMN (2003) The GBA2000 initiative: developing a global burnt area database from SPOT-VEGETATION imagery. Int J Remote Sens 24(6):1369–1376CrossRefGoogle Scholar
  32. Guoliang CAO, Zhang X, Sunling GONG, Zheng F (2008) Investigation on emission factors of particulate matter and gaseous pollutants from crop residue burning. J Environ Sci 20(1):50–55CrossRefGoogle Scholar
  33. Hantson S, Padilla M, Corti D, Chuvieco E (2013) Strengths and weaknesses of MODIS hotspots to characterize global fire occurrence. Remote Sens Environ 131:152–159CrossRefGoogle Scholar
  34. Hayasaka H, Noguchi I, Putra EI, Yulianti N, Vadrevu K (2014) Peat-fire-related air pollution in Central Kalimantan, Indonesia. Environ Pollut 195:257–266CrossRefGoogle Scholar
  35. Heil A, Goldammer J (2001) Smoke-haze pollution: a review of the 1997 episode in Southeast Asia. Reg Environ Change 2(1):24–37CrossRefGoogle Scholar
  36. Hien PD, Bac VT, Tham HC, Nhan DD, Vinh LD (2002) Influence of meteorological conditions on PM 2.5 and PM 2.5—10 concentrations during the monsoon season in Hanoi, Vietnam. Atmos Environ 36(21):3473–3484CrossRefGoogle Scholar
  37. Hoelzemann JJ (2004) Global Wildland Fire Emission Model (GWEM): evaluating the use of global area burnt satellite data. J Geophys Res 109(D14):D14S04CrossRefGoogle Scholar
  38. Hopke PK (2009) Contemporary threats and air pollution. Atmos Environ 43(1):87–93CrossRefGoogle Scholar
  39. Justice CO, Giglio L, Korontzi S, Owens J, Morisette JT, Roy D et al (2002) The MODIS fire products. Remote Sens Environ 83(1):244–262CrossRefGoogle Scholar
  40. Kant Y, Ghosh AB, Sharma MC, Gupta PK, Prasad VK, Badarinath KVS, Mitra AP (2000a) Studies on aerosol optical depth in biomass burning areas using satellite and ground-based observations. Infrared Phys Technol 41(1):21–28CrossRefGoogle Scholar
  41. Kant Y, Prasad VK, Badarinath KVS (2000b) Algorithm for detection of active fire zones using NOAA AVHRR data. Infrared Phys Technol 41(1):29–34CrossRefGoogle Scholar
  42. Kaufman YJ, Justice CO, Flynn LP, Kendall JD, Prins EM, Giglio L et al (1998) Potential global fire monitoring from EOS-MODIS. J Geophys Res Atmos 103(D24):32215–32238CrossRefGoogle Scholar
  43. Kurokawa J, Ohara T, Morikawa T, Hanayama S, Janssens-Maenhout G, Fukui T, Kawashima K, Akimoto H (2013) Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: regional Emission inventory in ASia (REAS) version 2. Atmos Chem Phys 13(21):11019–11058CrossRefGoogle Scholar
  44. Lâm HT, Rönmark E, Tường NV, Ekerljung L, Chúc NTK, Lundbäck B (2011) Increase in asthma and a high prevalence of bronchitis: results from a population study among adults in urban and rural Vietnam. Respir Med 105(2):177–185CrossRefGoogle Scholar
  45. Lasko K, Vadrevu K, Tran V, Ellicott E, Nguyen T, Bui H, Justice C (2017) Satellites may underestimate rice residue and associated burning emissions in Vietnam. Environ Res Lett 12(8)Google Scholar
  46. Le TH, Nguyen TNT, Lasko K, Ilavajhala S, Vadrevu KP, Justice C (2014) Vegetation fires and air pollution in Vietnam. Environ Pollut 195:267–275CrossRefGoogle Scholar
  47. Nelson A, Gumma MK (2015) A map of lowland rice extent in the major rice growing countries of Asia. http://irri.org/our-work/research/policy-and-markets/mapping
  48. Nepstad DC, Verssimo A, Alencar A, Nobre C, Lima E, Lefebvre P et al (1999) Large-scale impoverishment of Amazonian forests by logging and fire. Nature 398(6727):505–508CrossRefGoogle Scholar
  49. Nguyen TNT, Ta VC, Le TH, Mantovani S (2014) Particulate matter concentration estimation from satellite aerosol and meteorological parameters: data-driven approaches. In: Huynh V, Denoeux T, Tran D, Le A, Pham S (eds) Knowledge and systems engineering. Springer, Cham, pp 351–362CrossRefGoogle Scholar
  50. Oanh NTK, Ly BT, Tipayarom D, Manandhar BR, Prapat P, Simpson CD, Liu LJS (2011) Characterization of particulate matter emission from open burning of rice straw. Atmos Environ 45(2):493–502CrossRefGoogle Scholar
  51. Padilla M, Stehman SV, Ramo R, Corti D, Hantson S, Oliva P et al (2015) Comparing the accuracies of remote sensing global burned area products using stratified random sampling and estimation. Remote Sens Environ 160:114–121CrossRefGoogle Scholar
  52. Pham DT (2011) Mapping paddy cultivation and crop burn areas using MODIS in Mekong Delta, Vietnam. MS Thesis. Asian Institute of Technology, School of Engineering and TechnologyGoogle Scholar
  53. Pham TT, Moeliono M, Nguyen TH, Nguyen HT, Vu TH (2012) The context of REDD+ in Vietnam: drivers, agents and institutions (No. CIFOR Occasional Paper no. 75). Center for International Forestry Research (CIFOR), BogorGoogle Scholar
  54. Pinty B, Verstraete MM (1992) GEMI: a non-linear index to monitor global vegetation from satellites. Vegetatio 101(1):15–20CrossRefGoogle Scholar
  55. Prasad VK, Kant Y, Gupta PK, Elvidge C, Badarinath KVS (2002) Biomass burning and related trace gas emissions from tropical dry deciduous forests of India: a study using DMSP-OLS data and ground-based measurements. Int J Remote Sens 23(14):2837–2851CrossRefGoogle Scholar
  56. Prasad VK, Lata M, Badarinath KVS (2003) Trace gas emissions from biomass burning from northeast region in India—estimates from satellite remote sensing data and GIS. Environmentalist 23(3):229–236CrossRefGoogle Scholar
  57. Pungkhom P (2014) Health risk assessment from bush fire air pollutants using Statistical Analysis and Geographic Information System: a case study in Northern Thailand. Int J Geoinform 10(1)Google Scholar
  58. Pyne SJ (2006) The still-burning bush. Scribe Publications, MelbourneGoogle Scholar
  59. Roberts SJ (2000) Tropical fire ecology. Prog Phys Geogr 24(2):281–288CrossRefGoogle Scholar
  60. Roy DP, Boschetti L, Justice CO, Ju J (2008) The collection 5 MODIS burned area product—global evaluation by comparison with the MODIS active fire product. Remote Sens Environ 112(9):3690–3707CrossRefGoogle Scholar
  61. Saha S (2002) Anthropogenic fire regime in a deciduous forest of central India. Curr Sci 82:101–104Google Scholar
  62. Sahai S, Sharma C, Singh SK, Gupta PK (2010) Ambient CO levels during winter and summer agricultural burning seasons of Northern India. Asian J Water Environ Pollut 7(4):99–104Google Scholar
  63. Sastry N (2002) Forest fires, air pollution, and mortality in Southeast Asia. Demography 39(1):1–23CrossRefGoogle Scholar
  64. Schroeder W, Csiszar I, Morisette J (2008) Quantifying the impact of cloud obscuration on remote sensing of active fires in the Brazilian Amazon. Remote Sens Environ 112(2):456–470CrossRefGoogle Scholar
  65. Seiler W, Crutzen PJ (1980) Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Clim Change 2(3):207–247CrossRefGoogle Scholar
  66. Shi Y, Matsunaga T (2017) Temporal comparison of global inventories of CO2 emissions from biomass burning during 2002–2011 derived from remotely sensed data. Environ Sci Pollut Res 24(20):16905–16916CrossRefGoogle Scholar
  67. Silverman BW (1986) Density estimation for statistics and data analysis, vol 26. CRC Press, New YorkCrossRefGoogle Scholar
  68. Stein AF, Draxler RR, Rolph GD, Stunder BJB, Cohen MD, Ngan F (2015) NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull Amer Meteor Soc 96:2059–2077CrossRefGoogle Scholar
  69. Streets DG (2004) On the future of carbonaceous aerosol emissions. J Geophys Res 109(D24)Google Scholar
  70. Streets DG, Yarber KF, Woo JH, Carmichael GR (2003) Biomass burning in Asia: annual and seasonal estimates and atmospheric emissions. Glob Biogeochem Cycles 17(4):10–11CrossRefGoogle Scholar
  71. Sukitpaneenit M, Oanh NTK (2014) Satellite monitoring for carbon monoxide and particulate matter during forest fire episodes in Northern Thailand. Environ Monit Assess 186(4):2495–2504CrossRefGoogle Scholar
  72. Tansey K, Beston J, Hoscilo A, Page SE, Paredes Hernández CU (2008) Relationship between MODIS fire hot spot count and burned area in a degraded tropical peat swamp forest in Central Kalimantan, Indonesia. J Geophys Res Atmos 113(D23)Google Scholar
  73. Thonicke K, Venevsky S, Sitch S, Cramer W (2001) The role of fire disturbance for global vegetation dynamics: coupling fire into a Dynamic Global Vegetation Model. Glob Ecol Biogeogr 10(6):661–677CrossRefGoogle Scholar
  74. Tung ST, Cu NX, Hai NX (2014) Impact of rice straw burning methods on soil temperature and microorganism distribution in the paddy soil ecosystems. ARPN J Agric Biol Sci 9(5):157–160Google Scholar
  75. Turner MG, Romme WH (1994) Landscape dynamics in crown fire ecosystems. Landsc Ecol 9(1):59–77CrossRefGoogle Scholar
  76. Vadrevu KP, Justice CO (2011) Vegetation fires in the Asian region: satellite observational needs and priorities. Glob Environ Res 15(1):65–76Google Scholar
  77. Vadrevu K, Lasko K (2015) Fire regimes and potential bioenergy loss from agricultural lands in the Indo-Gangetic Plains. J Environ Manage 148:10–20CrossRefGoogle Scholar
  78. Vadrevu KP, Eaturu A, Badarinath KV (2006) Spatial distribution of forest fires and controlling factors in Andhra Pradesh, India using spot satellite datasets. Environ Monit Assess 123(1):75–96CrossRefGoogle Scholar
  79. Vadrevu KP, Badarinath KVS, Anuradha E (2008) Spatial patterns in vegetation fires in the Indian region. Environ Monit Assess 147(1–3):1–13CrossRefGoogle Scholar
  80. Vadrevu KP, Ellicott E, Badarinath KVS, Vermote E (2011) MODIS derived fire characteristics and aerosol optical depth variations during the agricultural residue burning season, north India. Environ Pollut 159(6):1560–1569CrossRefGoogle Scholar
  81. Vadrevu KP, Ellicott E, Giglio L, Badarinath KVS, Vermote E, Justice C, Lau WK (2012) Vegetation fires in the Himalayan region–Aerosol load, black carbon emissions and smoke plume heights. Atmos Environ 47:241–251CrossRefGoogle Scholar
  82. Vadrevu KP, Csiszar I, Ellicott E, Giglio L, Badarinath KVS, Vermote E, Justice C (2013a) Hotspot analysis of vegetation fires and intensity in the Indian region. IEEE J Sel Top Appl Earth Observ Remote Sens 6(1):224–238CrossRefGoogle Scholar
  83. Vadrevu KP, Giglio L, Justice C (2013b) Satellite based analysis of fire–carbon monoxide relationships from forest and agricultural residue burning (2003–2011). Atmos Environ 64:179–191CrossRefGoogle Scholar
  84. Vadrevu KP, Lasko K, Justice C (2014) Spatial variations in vegetation fires and carbon monoxide concentrations in South Asia. In: Srivastava P et al (eds) Remote sensing applications in environmental research. Springer, New York, pp 131–149CrossRefGoogle Scholar
  85. Vadrevu KP, Lasko K, Giglio L, Justice C (2015) Vegetation fires, absorbing aerosols and smoke plume characteristics in diverse biomass burning regions of Asia. Environ Res Lett 10(10):105003CrossRefGoogle Scholar
  86. van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Kasibhatla PS, Arellano AF (2006) Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos Chem Phys 6(11):3423–3441CrossRefGoogle Scholar
  87. van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Mu M, Kasibhatla PS, van Leeuwen TT (2010) Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos Chem Phys 10(23):11707–11735CrossRefGoogle Scholar
  88. Venkataraman C, Habib G, Kadamba D, Shrivastava M, Leon J-F, Crouzille B, Boucher O, Streets DG (2006) Emissions from open biomass burning in India: integrating the inventory approach with high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) active-fire and land cover data. Glob Biogeochem Cycles 20(2)Google Scholar
  89. Vogl RJ (1974) Effects of fire on grasslands. In: Kozlowski TT, Ahlgren CE (eds) Fire and ecosystems. Academic, New YorkGoogle Scholar
  90. Wooster MJ, Roberts G, Perry GLW, Kaufman YJ (2005) Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. J Geophys Res Atmos 110(D24):D24311CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Geographical SciencesUniversity of MarylandCollege ParkUSA
  2. 2.NASA Marshall Space Flight CenterHuntsvilleUSA

Personalised recommendations