Spatio-Temporal Analysis of Land and Forest Fires in Indonesia Using MODIS Active Fire Dataset

  • Israr Albar
  • I. Nengah Surati Jaya
  • Bambang Hero Saharjo
  • Budi Kuncahyo
  • Krishna Prasad Vadrevu
Chapter
Part of the Springer Remote Sensing/Photogrammetry book series (SPRINGERREMO)

Abstract

Land and forest fires occur in Indonesia every year causing ecological damage and economic losses. Most of the fires are human initiated as locals use fire as a land clearing tool, converting forests to agriculture and plantations. In this study, we use descriptive statistics to analyze fires from 2006 to 2015 using MODIS satellite data. Specifically, spatio-temporal patterns of fires have been analyzed in all provinces, forest types, peatlands, and moratorium areas. The results suggested fires in almost all regions of Indonesia, in particular, Sumatra, Kalimantan, and Papua. The highest fire intensity was found in the production forests (73%). The year of 2015 was the worst fire season in Indonesia since 1997. During 2015, 67% of fires were detected in forest areas and 33% in non-forest areas. We also found 36% of active fires occurring in peatlands. Within the fire moratorium area, active fires continue to increase significantly suggesting moratorium areas had not been effective for fire mitigation.

Keywords

Forest fire MODIS Peatlands Moratorium 

References

  1. Badarinath KVS, Kharol SK, Latha KM, Chand TR, Prasad VK, Jyothsna AN, Samatha K (2007) Multiyear ground-based and satellite observations of aerosol properties over a tropical urban area in India. Atmos Sci Lett 8(1):7–13CrossRefGoogle Scholar
  2. Badarinath KVS, Kharol SK, Krishna Prasad V, Kaskaoutis DG, Kambezidis HD (2008) Variation in aerosol properties over Hyderabad, India during intense cyclonic conditions. Int J Remote Sens 29(15):4575–4597CrossRefGoogle Scholar
  3. Badarinath KVS, Sharma AR, Kharol SK, Prasad VK (2009) Variations in CO, O3 and black carbon aerosol mass concentrations associated with planetary boundary layer (PBL) over tropical urban environment in India. J Atmos Chem 62(1):73–86CrossRefGoogle Scholar
  4. Biswas S, Vadrevu KP, Lwin ZM, Lasko K, Justice CO (2015) Factors controlling vegetation fires in protected and non-protected areas of Myanmar. PLoS One 10(4):e0124346CrossRefGoogle Scholar
  5. Davies DK, Ilavajhala S, Wong MM, Justice CO (2009) Fire information for resource management system: archiving and distributing MODIS active fire data. IEEE Trans Geosci Remote Sens 47(1):72–79CrossRefGoogle Scholar
  6. Dennis RA, Mayer J, Applegate G, Chokkalingam U, Colfer CJP, Kurniawan I, Lachowski H, Maus P, Permana RP, Ruchiat Y, Stolle F, Suyanto dan Tomich TP (2005) Fire, people and pixels: linking social science and remote sensing to understand underlying causes and impacts of fires in Indonesia. Hum Ecol 33:465–504CrossRefGoogle Scholar
  7. Gaveau DL, Salim MA, Hergoualc’h K, Locatelli B, Sloan S, Wooster M, Marlier ME, Molidena E, Yaen H, DeFries R, Verchot L (2014) Major atmospheric emissions from peat fires in Southeast Asia during non-drought years: evidence from the 2013 Sumatran fires. Sci Rep 4:6112Google Scholar
  8. Giglio L, Descloitres J, Justice CO, Kaufman Y (2003) An enhanced contextual fire detection algorithm for MODIS. Remote Sens Environ 87:273–282CrossRefGoogle Scholar
  9. Giglio L, van der Werf GR, Randerson JT, Collatz GJ, Kasibhatla P (2006) Global estimation of burned area using MODIS active fire observations. Atmos Chem Phys 6:957–974CrossRefGoogle Scholar
  10. Glover D (2001) The Indonesian fires and haze of 1997: the economic toll. In: Eaton P, Radojevic M (eds) Forest fires and regional haze in Southeast Asia. Nova Science Publishers, New York, pp 227–236Google Scholar
  11. Hansen MC, Krylov A, Tyukavina A, Potapov PV, Turubanova S, Zutta B, Ifo S, Margono B, Stolle F, Moore R (2016) Humid tropical forest disturbance alerts using Landsat data. Environ Res Lett 11(3):034008CrossRefGoogle Scholar
  12. Hayasaka H, Noguchi I, Putra EI, Yulianti N, Vadrevu K (2014) Peat-fire-related air pollution in Central Kalimantan, Indonesia. Environ Pollut 195:257–266CrossRefGoogle Scholar
  13. Herawati H, Santoso H (2011) Tropical forest susceptibility to and risk of fire under changing climate: a review of fire nature, policy and institutions in Indonesia. Forest Policy Econ 13(4):227–233CrossRefGoogle Scholar
  14. Kant Y, Ghosh AB, Sharma MC, Gupta PK, Prasad VK, Badarinath KVS, Mitra AP (2000a) Studies on aerosol optical depth in biomass burning areas using satellite and ground-based observations. Infrared Phys Technol 41(1):21–28CrossRefGoogle Scholar
  15. Kant Y, Prasad VK, Badarinath KVS (2000b) Algorithm for detection of active fire zones using NOAA AVHRR data. Infrared Phys Technol 41(1):29–34CrossRefGoogle Scholar
  16. Le TH, Nguyen TNT, Lasko K, Ilavajhala S, Vadrevu KP, Justice C (2014) Vegetation fires and air pollution in Vietnam. Environ Pollut 195:267–275CrossRefGoogle Scholar
  17. Marlier ME, DeFries RS, Voulgarakis A, Kinney PL, Randerson JT, Shindell DT, Chen Y, Faluvegi G (2013) El Niño and health risks from landscape fire emissions in southeast Asia. Nat Clim Chang 3(2):131–136CrossRefGoogle Scholar
  18. Ministry of Environment (2010) Indonesia Second National Communication under the United Nations Framework Convention on Climate Change (UNFCCC). JakartaGoogle Scholar
  19. Ministry of Environment and Forestry (2015a) Intended Nationally Determined Contribution Republic of Indonesia. JakartaGoogle Scholar
  20. Ministry of Environment and Forestry (2015b) Understanding Estimation of Emission from Land and Forest Fires in Indonesia 2015. JakartaGoogle Scholar
  21. Murdiyarso D, Lebel L (2007) Local to global perspectives on forest and land fires in Southeast Asia. Mitig Adapt Strateg Glob Chang 12:3–11.  https://doi.org/10.1007/s11027-006-9055-4 CrossRefGoogle Scholar
  22. Prasad VK, Kant Y, Badarinath KVS (2001) CENTURY ecosystem model application for quantifying vegetation dynamics in shifting cultivation areas: a case study from Rampa Forests, Eastern Ghats (India). Ecol Res 16(3):497–507CrossRefGoogle Scholar
  23. Prasad VK, Kant Y, Gupta PK, Elvidge C, Badarinath KVS (2002) Biomass burning and related trace gas emissions from tropical dry deciduous forests of India: a study using DMSP-OLS data and ground-based measurements. Int J Remote Sens 23(14):2837–2851CrossRefGoogle Scholar
  24. Prasad VK, Lata M, Badarinath KVS (2003) Trace gas emissions from biomass burning from northeast region in India—estimates from satellite remote sensing data and GIS. Environmentalist 23(3):229–236CrossRefGoogle Scholar
  25. Rowell A, Moore PF (2001) Global review of forest fires. WWF.Google Scholar
  26. Tacconi L (2003) Fires in Indonesia: causes, costs and policy implications (No. CIFOR Occasional Paper no. 38, pp. vi-24p). CIFOR, Bogor, IndonesiaGoogle Scholar
  27. UNDP (2015) Towards Improved Forest Governance in Indonesia. Preliminary Study on Implementation of Joint Regulation on Multidoor Approach in Handling Criminal on Natural Resources-Environment in Forest and Peatland AreaGoogle Scholar
  28. Vadrevu KP, Justice CO (2011) Vegetation fires in the Asian region: satellite observational needs and priorities. Global Environ Res 15(1):65–76Google Scholar
  29. Vadrevu K, Lasko K (2015) Fire regimes and potential bioenergy loss from agricultural lands in the Indo-Gangetic Plains. J Environ Manag 148:10–20CrossRefGoogle Scholar
  30. Vadrevu KP, Eaturu A, Badarinath KV (2006) Spatial distribution of forest fires and controlling factors in Andhra Pradesh, India using spot satellite datasets. Environ Monit Assess 123(1):75–96CrossRefGoogle Scholar
  31. Vadrevu KP, Badarinath KVS, Anuradha E (2008) Spatial patterns in vegetation fires in the Indian region. Environ Monit Assess 147(1–3):1–13CrossRefGoogle Scholar
  32. Vadrevu KP, Ellicott E, Badarinath KVS, Vermote E (2011) MODIS derived fire characteristics and aerosol optical depth variations during the agricultural residue burning season, north India. Environ Pollut 159(6):1560–1569CrossRefGoogle Scholar
  33. Vadrevu KP, Ellicott E, Giglio L, Badarinath KVS, Vermote E, Justice C, Lau WK (2012) Vegetation fires in the himalayan region–aerosol load, black carbon emissions and smoke plume heights. Atmos Environ 47:241–251CrossRefGoogle Scholar
  34. Vadrevu KP, Csiszar I, Ellicott E, Giglio L, Badarinath KVS, Vermote E, Justice C (2013a) Hotspot analysis of vegetation fires and intensity in the Indian region. IEEE J Sel Top Appl Earth Observ Remote Sens 6(1):224–238CrossRefGoogle Scholar
  35. Vadrevu KP, Giglio L, Justice C (2013b) Satellite based analysis of fire–carbon monoxide relationships from forest and agricultural residue burning (2003–2011). Atmos Environ 64:179–191CrossRefGoogle Scholar
  36. Vadrevu KP, Lasko K, Giglio L, Justice C (2014) Analysis of Southeast Asian pollution episode during June 2013 using satellite remote sensing datasets. Environ Pollut 195:245–256CrossRefGoogle Scholar
  37. Vadrevu KP, Lasko K, Giglio L, Justice C (2015) Vegetation fires, absorbing aerosols and smoke plume characteristics in diverse biomass burning regions of Asia. Environ Res Lett 10(10):105003CrossRefGoogle Scholar
  38. van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Mu M, Kasibhatla PS, Morton DC, DeFries RS, Jin Y, van Leeuwen TT (2010) Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos Chem Phys 10:11707–11735CrossRefGoogle Scholar
  39. Verchot LV, Petkova E, Obidzinski K, Atmadja S, Yuliani EL, Dermawan A, Murdiyarso D, Amira S (2010) Reducing forestry emissions in Indonesia. CIFOR, Bogor, IndonesiaGoogle Scholar
  40. World Bank (2015) Indonesia economic quarterly: reforming amid uncertainty. JakartaGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Israr Albar
    • 1
    • 2
  • I. Nengah Surati Jaya
    • 3
  • Bambang Hero Saharjo
    • 4
  • Budi Kuncahyo
    • 3
  • Krishna Prasad Vadrevu
    • 5
  1. 1.Graduate SchoolBogor Agricultural UniversityJawa BaratIndonesia
  2. 2.Directorate General of Climate Change, Ministry of Environment and ForestryJakartaIndonesia
  3. 3.Forest Fire Laboratory, Department of Forest Management, Faculty of ForestryBogor Agricultural UniversityBogorIndonesia
  4. 4.Forest Fire Laboratory, Department of Silviculture, Faculty of ForestryBogor Agricultural UniversityBogorIndonesia
  5. 5.NASA Marshall Space Flight CenterHuntsvilleUSA

Personalised recommendations