Project MANTRA: Multi-platform ANalysis of TRace Gases and Aerosols with a Focus on Atmospheric CO2 Measurements for Southeast Asia

Chapter
Part of the Springer Remote Sensing/Photogrammetry book series (SPRINGERREMO)

Abstract

This chapter gives an overview of Project MANTRA (Multi-platform Analysis of Trace gases and Aerosols) focusing on atmospheric carbon dioxide. Specifically, this chapter addresses how surface CO2 data can be measured in a cost-effective manner. Applications are shown for measurements at Lampang Rajabhat University (LPRU), Thailand, at the University of the Philippines Institute of Environmental Science and Meteorology (UP-IESM) and at Biñan, Laguna, Philippines. The measured data were also compared with simulations using the Regional Emissions Inventory in Asia (REAS ver. 2.1) and the Stochastic Time-Inverted Lagrangian Transport (STILT) model. Mobile measurements taken from the Lampang-Tak route in Thailand and from Quezon City-Baguio route in the Philippines are also shown. Broadening to the regional scale, measurements from the Ship of Opportunity (SOOP), from the High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) Pole-to-Pole Observation (HIPPO) and from the Greenhouse gases Observing SATellite (GOSAT) over the Southeast Asian region are presented. New initiatives such as the Total Carbon Column Observing Network (TCCON) Southeast Asia are also introduced.

Keywords

Atmospheric CO2 measurements STILT model Southeast Asia 

Notes

Acknowledgements

The author would like to thank the following: Gerry Bagtasa, Mark Daryl Ramos, John Manalo, Loren Joy Estrebillo and Marinell Palangao of UP-IESM, Thiranan Sonkaew, Jenjira Paengkantha, Sarinee Jaikanngean and Nattaya Kawee of LPRU, and Teresa Macatangay and Norma Macatangay for assisting in the fixed site surface CO2 measurements; Thiranan Sonkaew of LPRU, Loren Joy Estrebillo, John Manalo, Yak Manalo, John Ariel Rojas. and Patricia Erika Lim of UP-IESM for assisting in the terrestrial mobile measurements of surface CO2; Yukihiro Nojiri and Hiroshi Tanimoto of NIES and Shigeru Kariya of GEF for assisting with the data access from Fujitrans World Ship of Opportunity; and Debra Wunch of CALTECH, Voltaire Velazco and David Griffith of UoW, Florian Schwandner of NASA JPL and Isamu Morino of NIES for assisting with the TCCON and GOSAT data.

References

  1. Badarinath KVS, Kharol SK, Latha KM, Chand TR, Prasad VK, Jyothsna AN, Samatha K (2007) Multiyear ground-based and satellite observations of aerosol properties over a tropical urban area in India. Atmos Sci Lett 8(1):7–13CrossRefGoogle Scholar
  2. Badarinath KVS, Kharol SK, Krishna Prasad V, Kaskaoutis DG, Kambezidis HD (2008) Variation in aerosol properties over Hyderabad, India during intense cyclonic conditions. Int J Remote Sens 29(15):4575–4597CrossRefGoogle Scholar
  3. Badarinath KVS, Sharma AR, Kharol SK, Prasad VK (2009) Variations in CO, O3 and black carbon aerosol mass concentrations associated with planetary boundary layer (PBL) over tropical urban environment in India. J Atmos Chem 62(1):73–86CrossRefGoogle Scholar
  4. Cogan AJ, Boesch H, Parker RJ, Feng L, Palmer PI, Blavier JFL et al (2012) Atmospheric carbon dioxide retrieved from the Greenhouse gases Observing SATellite (GOSAT): comparison with ground-based TCCON observations and GEOS-Chem model calculations. J Geophys Res Atmos 117(21).  https://doi.org/10.1029/2012JD018087
  5. Gerbig C, Lin JC, Wofsy SC, Daube BC, Andrews AE, Stephens BB et al (2003) Toward constraining regional-scale fluxes of CO2 with atmospheric observations over a continent: 2. Analysis of COBRA data using a receptor-oriented framework. J Geophys Res Atmos 108(D24).  https://doi.org/10.1029/2003JD003770
  6. Houghton RA, Nassikas AA (2017) Global and regional fluxes of carbon from land use and land cover change 1850–2015. Global Biogeochem Cycles 31(3):456–472CrossRefGoogle Scholar
  7. Kurokawa J, Ohara T, Morikawa T, Hanayama S, Fukui T, Kawashima K (2013). Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: Regional Emission inventory in ASia (REAS) version 2, 11019–11058.  https://doi.org/10.5194/acp-13-11019-2013
  8. Lin JC, Gerbig C, Wofsy SC, Andrews AE, Daube BC, Davis KJ, Grainger CA (2003) A near-field tool for simulating the upstream influence of atmospheric observations: the Stochastic Time-Inverted Lagrangian Transport (STILT) model. J Geophys Res 108(D16):ACH 2–1–ACH 2–17.  https://doi.org/10.1029/2002JD003161 CrossRefGoogle Scholar
  9. Macatangay R, Sonkaew T, Velazco V, Gerbig C, Intarat N, Nantajai N, Bagtasa G (2014) Factors influencing surface CO2 variations in LPRU, Thailand and IESM, Philippines. Environ Pollut 195:282–291.  https://doi.org/10.1016/j.envpol.2014.06.035 CrossRefGoogle Scholar
  10. Nara H, Tanimoto H, Tohjima Y, Mukai H, Nojiri Y, Machida T (2014) Emissions of methane from offshore oil and gas platforms in Southeast Asia. Sci Rep 4:6503.  https://doi.org/10.1038/srep06503 CrossRefGoogle Scholar
  11. Peters W, Jacobson AR, Sweeney C, Andrews AE, Conway TJ, Masarie K et al (2007) An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proc Natl Acad Sci U S A 104(48):18925–18930.  https://doi.org/10.1073/pnas.0708986104 CrossRefGoogle Scholar
  12. Prasad VK, Badarinth KVS (2004) Land use changes and trends in human appropriation of above ground net primary production (HANPP) in India (1961–98). Geograph J 170(1):51–63CrossRefGoogle Scholar
  13. Prasad VK, Kant Y, Badarinath KVS (2001) CENTURY ecosystem model application for quantifying vegetation dynamics in shifting cultivation areas: a case study from Rampa Forests, Eastern Ghats (India). Ecol Res 16(3):497–507CrossRefGoogle Scholar
  14. Stephens BB, Gurney KR, Tans PP, Sweeney C, Peters W, Bruhwiler L et al (2007) Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science (New York, NY) 316(5832):1732–1735.  https://doi.org/10.1126/science.1137004 CrossRefGoogle Scholar
  15. Vay SA, Choi Y, Vadrevu KP, Blake DR, Tyler SC, Wisthaler A, Hecobian A, Kondo Y, Diskin GS, Sachse GW, Woo JH (2011) Patterns of CO2 and radiocarbon across high northern latitudes during International Polar Year 2008. J Geophys Res Atmos 116(D14)Google Scholar
  16. Wofsy SC, Daube BC, Jimenez R, Kort E, Pittman JV, Park S, Commane R, Xiang B, Santoni G, Jacob D, Fisher J, Pickett-Heaps C, Wang H, Wecht K, Wang Q-Q, Stephens BB, Shertz S, Watt AS, Romashkin P, Campos T, Haggerty J, Cooper WA, Rogers D, Beaton S, Hendershot R, Elkins JW, Fahey DW, Gao RS, Moore F, Montzka SA, Schwarz JP, Perring AE, Hurst D, Miller BR, Sweeney C, Oltmans S, Nance D, Hintsa E, Dutton G, Watts LA, Spackman JR, Rosenlof KH, Ray EA, Hall B, Zondlo MA, Diao M, Keeling R, Bent J, Atlas EL, Lueb R, Mahoney MJ (2012) HIPPO merged 10-second meteorology, atmospheric chemistry, aerosol data (R_20121129). Carbon Dioxide Information Analysis Center. Oak Ridge National Laboratory, Oak RidgeGoogle Scholar
  17. Wunch D, Toon GC, Blavier J-FL, Washenfelder RA, Notholt J, Connor BJ et al (2011) The total carbon column observing network. Philos Trans R Soc A Math Phys Eng Sci 369(1943):2087–2112.  https://doi.org/10.1098/rsta.2010.0240 CrossRefGoogle Scholar
  18. Yokota T, Yoshida Y, Eguchi N, Ota Y, Tanaka T, Watanabe H, Maksyutov S (2009) Global concentrations of CO2 and CH4 retrieved from GOSAT: first preliminary results. Sola 5:160–163.  https://doi.org/10.2151/sola.2009-041 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Atmospheric Research UnitNational Astronomical Research Institute of ThailandChiang MaiThailand
  2. 2.Institute of Environmental Science and MeteorologyUniversity of the Philippines, DilimanQuezon CityPhilippines

Personalised recommendations