Study of Lower Tropospheric Ozone over Central and Eastern China: Comparison of Satellite Observation with Model Simulation

  • Sachiko Hayashida
  • Satoko Kayaba
  • Makoto Deushi
  • Kazuyo Yamaji
  • Akiko Ono
  • Mizuo Kajino
  • Tsuyoshi Thomas Sekiyama
  • Takashi Maki
  • Xiong Liu
Chapter
Part of the Springer Remote Sensing/Photogrammetry book series (SPRINGERREMO)

Abstract

The lower tropospheric ozone enhancement over Central and Eastern China (CEC) was reported by Hayashida et al. (Atmos Chem Phys 15(17):9865–9881, 2015) using the Ozone Monitoring Instrument (OMI) multiple-layer product retrieved by Liu et al. (Atmos Chem Phys 10(5):2521–2537, 2010), which first showed the lower tropospheric ozone enhancement from ultraviolet and visible (UV-Vis) spectra measurements from space. However, to clarify the enhancement in the concentration of the lowermost ozone using spaceborne measurements, it is necessary to understand the effect of ozone variation in the upper troposphere and lower stratosphere (UT/LS), because of large smoothing errors in the retrieval scheme. In this study, a scheme was developed to eliminate the artificial effect of UT/LS ozone enhancement on lower tropospheric ozone retrieval using OMI. By applying the UT/LS screening scheme for June 2006, we removed the artificial effect of the UT/LS ozone enhancement on the lower tropospheric ozone. Even after UT/LS screening, we were able to show a clear enhancement in the lower tropospheric ozone over CEC in June 2006 and confirmed the conclusion derived by Hayashida et al. (Atmos Chem Phys 15(17):9865–9881, 2015). To clarify the reason for ozone enhancement in June, the effects of emissions from open crop residue burning (OCRB) in the North China Plain on lower tropospheric ozone were also examined using a comparison with model simulations. On the scale of the vertical resolution of OMI observations, the effect of OCRB on ozone enhancement does not seem to be significant, although it may be more significant when focusing on ozone in the planetary boundary layer.

Keywords

Ozone Lower troposphere Model simulations 

Notes

Acknowledgements

We express our gratitude to Ms. H. Araki and Ms. M. Nakazawa for their help with the data analysis. S. Hayashida and A. Ono were supported by a Grant-in-Aid from the Green Network of Excellence, Environmental Information (GRENE-ei) program, MEXT, Japan. X. Liu was supported by NASA and the Smithsonian Institution.

References

  1. Brasseur GP, Hauglustaine DA, Walters S, Rasch PJ (1998) MOZART, a global chemical transport model for ozone and related chemical tracers, 1, Model description. Journal of Geophysical Research 103, 28265-28289.CrossRefGoogle Scholar
  2. Bucsela EJ, Krotkov NA, Celarier EA, Lamsal LN, Swartz WH, Bhartia PK, Boersma KF, Veefkind JP, Gleason JF, Pickering KE (2013) A new stratospheric and tropospheric NO2 retrieval algorithm for nadir-viewing satellite instruments: applications to OMI. Atmospheric Measurement Techniques 6 (10):2607-2626. doi: https://doi.org/10.5194/amt-6-2607-2013 CrossRefGoogle Scholar
  3. Burrows JP, Platt U, Borrell P (2011) Tropospheric Remote Sensing from Space. The remote sensing of tropospheric composition from space. pp.1-65Google Scholar
  4. Deushi M, Shibata K (2011) Development of a Meteorological Research Institute Chemistry-Climate Model version 2 for the Study of Tropospheric and Stratospheric Chemistry. Papers in Meteorology and Geophysics 62:1-46. doi: https://doi.org/10.2467/mripapers.62.1 CrossRefGoogle Scholar
  5. Dufour G, Eremenko M, Cuesta J, Doche C, Foret G, Beekmann M, Cheiney A, Wang Y, Cai Z, Liu Y, Takigawa M, Kanaya Y, Flaud JM (2015) Springtime daily variations in lower-tropospheric ozone over east Asia: the role of cyclonic activity and pollution as observed from space with IASI. Atmospheric Chemistry and Physics 15 (18):10839-10856. doi: https://doi.org/10.5194/acp-15-10839-2015 CrossRefGoogle Scholar
  6. Granier C, Bessagnet B, Bond T, D’Angiola A, Denier van der Gon H, Frost GJ, Heil A, Kaiser JW, Kinne S, Klimont Z, Kloster S, Lamarque JF, Liousse C, Masui T, Meleux F, Mieville A, Ohara T, Raut JC, Riahi K, Schultz MG, Smith SJ, Thompson A, Aardenne J, Werf GR, Vuuren DP (2011) Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period. Climatic Change 109 (1):163-190. doi: https://doi.org/10.1007/s10584-011-0154-1 CrossRefGoogle Scholar
  7. Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, McKay WA, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Taylor J, Zimmermann P (1995) A global model of natural volatile organic compound emissions. Journal of Geophysical Research 100, 8873-8892.CrossRefGoogle Scholar
  8. Hayashida S, Liu X, Ono A, Yang K, Chance K (2015) Observation of ozone enhancement in the lower troposphere over East Asia from a space-borne ultraviolet spectrometer. Atmospheric Chemistry and Physics 15 (17):9865-9881. doi: https://doi.org/10.5194/acp-15-9865-2015.CrossRefGoogle Scholar
  9. Horowitz LW, Walters SM, Mauzerall DL, Emmons LK, Rasch PJ, Granier C, Tie X, Lamarque J-F, Schultz MG, Brasseur GP (2003) A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2. Journal of Geophysical Research 108, 4784, doi: https://doi.org/10.1029/2002JD002853 CrossRefGoogle Scholar
  10. Kanaya Y, Akimoto H, Wang ZF, Pochanart P, Kawamura K, Liu Y, Li J, Komazaki Y, Irie H, Pan XL, Taketani F, Yamaji K, Tanimoto H, Inomata S, Kato S, Suthawaree J, Okuzawa K, Wang G, Aggarwal SG, Fu PQ, Wang T, Gao J, Wang Y, Zhuang G (2013) Overview of the Mount Tai Experiment (MTX2006) in central East China in June 2006: studies of significant regional air pollution. Atmospheric Chemistry and Physics 13 (16):8265-8283. doi: https://doi.org/10.5194/acp-13-8265-2013 CrossRefGoogle Scholar
  11. Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H, Onogi K, Kamahori H, Kobayashi C, Endo H, Miyaoka K, Takahashi K (2015) The JRA-55 reanalysis: General specifications and basic characteristics. Journal of the Meteorological Society of Japan 93 (1): 5-48. doi:  https://doi.org/10.2151/jmsj.2015-001 CrossRefGoogle Scholar
  12. Kurokawa J, Ohara T, Morikawa T, Hanayama S, Janssens-Maenhout G, Fukui T, Kawashita K, Akimoto H (2013) Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: Regional Emission inventory in ASia (REAS) version 2. Atmospheric Chemistry and Physics 13 (21):11019-11058. doi: https://doi.org/10.5194/acp-13-11019-2013 CrossRefGoogle Scholar
  13. Langner J, Engardt M, Andersson C (2012) European summer surface ozone 1990–2100. Atmospheric Chemistry and Physics 12:10097-10105CrossRefGoogle Scholar
  14. Lefohn AS, Shadwick D, Oltmans SJ (2010) Characterizing changes in surface ozone levels in metropolitan and rural areas in the United States for 1980–2008 and 1994–2008. Atmospheric Environment 44:5199-5210.CrossRefGoogle Scholar
  15. Lamarque JF, Bond TC, Eyring V, Granier C, Heil A, Klimont Z, Lee D, Liousse C, Mieville A, Owen B, Schultz MG, Shindell D, Smith SJ, Stehfest E, Van Aardenne J, Cooper OR, Kainuma M, Mahowald N, McConnell JR, Naik V, Riahi K, van Vuuren DP (2010) Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application. Atmospheric Chemistry and Physics 10 (15):7017-7039. doi: https://doi.org/10.5194/acp-10-7017-2010 CrossRefGoogle Scholar
  16. Liu X, Bhartia PK, Chance K, Spurr RJD, Kurosu TP (2010) Ozone profile retrievals from the Ozone Monitoring Instrument. Atmospheric Chemistry and Physics 10 (5):2521-2537. doi: https://doi.org/10.5194/acp-10-2521-2010 CrossRefGoogle Scholar
  17. McPeters RD, Labow GJ, Logan JA (2007) Ozone climatological profiles for satellite retrieval algorithms. Journal of Geophysical Research 112:D05308. doi: https://doi.org/10.1029/2005jd006823 CrossRefGoogle Scholar
  18. Muller JF (1992) Geographical distribution and seasonal variation of surface emissions and deposition velocities of atmospheric trace gases. Journal of Geophysical Research 97, 3787-3804.CrossRefGoogle Scholar
  19. Nakatani A, Kondo S, Hayashida S, Nagashima T, Sudo K, Liu X, Chance K, Hirota I (2012) Enhanced Mid-Latitude Tropospheric Column Ozone over East Asia: Coupled Effects of Stratospheric Ozone Intrusion and Anthropogenic Sources. Journal of the Meteorological Society of Japan 90 (2):207-222. doi: https://doi.org/10.2151/jmsj.2012-204 CrossRefGoogle Scholar
  20. Ohara T, Akimoto H, Kurokawa J, Horii N, Yamaji K, Yan X, Hayasaka T (2007) An Asian emission inventory of anthropogenic emission sources for the period 1980-2020. Atmospheric Chemistry and Physics 7 (16):4419-4444. doi:  https://doi.org/10.5194/acp-7-4419-2007 CrossRefGoogle Scholar
  21. Ordóñez C, Mathis H, Furger M, Henne S, Hüglin C, Staehelin J, Prévôt ASH (2005) Changes of daily surface ozone maxima in Switzerland in all seasons from 1992 to 2002 and discussion of summer 2003. Atmospheric Chemistry and Physics 5:1187-1203.CrossRefGoogle Scholar
  22. Price C, Rind D (1992) A simple lightning parameterization for calculating global lightning distributions. Journal Geophysical Research 97, 9919-9933.CrossRefGoogle Scholar
  23. Price C, Rind D (1994) Modeling global lightning distributions in a general circulation model. Monthly Weather Review 122, 1930-1939.CrossRefGoogle Scholar
  24. Rodgers CD (2000) Inverse methods for atmospheric sounding. Theory and Practice, World Scientific Publishing, Singapore.CrossRefGoogle Scholar
  25. van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Mu M, Kasibhatla PS, Morton DC, DeFries RS, Jin Y, van Leeuwen TT (2010) Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry and Physics 10 (23):11707-11735. doi: https://doi.org/10.5194/acp-10-11707-2010 CrossRefGoogle Scholar
  26. Verstraeten WW, Neu JL, Williams JE, Bowman KW, Worden JR, Folkert Boersma K (2015) Rapid increases in tropospheric ozone production and export from China. Nature Geoscience 8:690-695CrossRefGoogle Scholar
  27. Wang T, Wei XL, Ding AJ, Poon CN, Lam KS, Li YS, Chan LY, Anson M (2009) Increasing surface ozone concentrations in the background atmosphere of Southern China, 1994–2007. Atmospheric Chemistry and Physics 9:6217-6227CrossRefGoogle Scholar
  28. Yamaji K, Li J, Uno I, Kanaya Y, Irie H, Takigawa M, Komazaki Y, Pochanart P, Liu Y, Tanimoto H, Ohara T, Yan X, Wang Z, Akimoto H (2010) Impact of open crop residual burning on air quality over Central Eastern China during the Mount Tai Experiment 2006 (MTX2006). Atmospheric Chemistry and Physics 10 (15):7353-7368. doi: https://doi.org/10.5194/acp-10-7353-2010 CrossRefGoogle Scholar
  29. Yan X, Ohara T, Akimoto H (2006) Bottom-up estimate of biomass burning in mainland China. Atmospheric Environment 40 (27):5262-5273. doi: https://doi.org/10.1016/j.atmosenv.2006.04.040 CrossRefGoogle Scholar
  30. Yienger JJ, Levy II H (1995) Empirical model of global soilbiogenic NOx emissions. Journal of Geophysical Research 100, 11447-11464.CrossRefGoogle Scholar
  31. Yukimoto S, Yoshimura H, Hosaka M, Sakami T, Tsujino H, Hirabara M, Tanaka T Y, Deushi M, Obata A, Nakano H, Adachi Y, Shindo E, Yabu S, Ose T, and Kitoh A (2011), Meteorological Research Institute Earth System Model Version 1 (MRI-ESM1)—Model Description—. Tech. Rep. of MRI, 64, 83 pp.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sachiko Hayashida
    • 1
  • Satoko Kayaba
    • 1
  • Makoto Deushi
    • 2
  • Kazuyo Yamaji
    • 3
  • Akiko Ono
    • 1
  • Mizuo Kajino
    • 2
  • Tsuyoshi Thomas Sekiyama
    • 2
  • Takashi Maki
    • 2
  • Xiong Liu
    • 1
  1. 1.Faculty of ScienceNara Women’s UniversityKitaouya NishimachiJapan
  2. 2.Meteorological Research InstituteTsukubaJapan
  3. 3.Graduate School of Maritime SciencesKobe UniversityKobeJapan

Personalised recommendations