Advertisement

Pint: A Static Analyzer for Transient Dynamics of Qualitative Networks with IPython Interface

  • Loïc Paulevé
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10545)

Abstract

The software Pint is devoted to the scalable analysis of the traces of automata networks, which encompass Boolean and discrete networks. Pint implements formal approximations of transient reachability-related properties, including mutation prediction and model reduction.

Pint is distributed with command line tools, as well as a Python module pypint. The latter provides a seamless integration with the Jupyter IPython notebook web interface, which allows to easily save, reuse, reproduce, and share workflows of model analysis.

Pint can address networks with hundreds to thousands interacting components, which are typically intractable with standard approaches.

References

  1. 1.
    Abou-Jaoudé, W., Monteiro, P.T., Naldi, A., Grandclaudon, M., Soumelis, V., Chaouiya, C., Thieffry, D.: Model checking to assess t-helper cell plasticity. In: Front. Bioeng. Biotechnol. 2, January 2015Google Scholar
  2. 2.
    Antao, T.: Bioinformatics with Python cookbook. Packt Publishing Ltd., Birmingham (2015)Google Scholar
  3. 3.
    Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press, New York (2003)CrossRefzbMATHGoogle Scholar
  4. 4.
    Calzone, L., Fages, F., Soliman, S.: Biocham: an environment for modeling biological systems and formalizing experimental knowledge. Bioinformatics 22(14), 1805–1807 (2006)CrossRefGoogle Scholar
  5. 5.
    Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV 2: an opensource tool for symbolic model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer, Heidelberg (2002). doi: 10.1007/3-540-45657-0_29 CrossRefGoogle Scholar
  6. 6.
    Cock, P.J.A., Antao, T., Chang, J.T., Chapman, B.A., Cox, C.J., Dalke, A., Friedberg, I., Hamelryck, T., Kauff, F., Wilczynski, B., de Hoon, M.J.L.: Biopython: freely available python tools for computational molecular biology and bioinformatics. Bioinformatics 25(11), 1422–1423 (2009)CrossRefGoogle Scholar
  7. 7.
    Fages, F., Martinez, T., Rosenblueth, D.A., Soliman, S.: Influence systems vs reaction systems. In: Bartocci, E., Lio, P., Paoletti, N. (eds.) CMSB 2016. LNCS, vol. 9859, pp. 98–115. Springer, Cham (2016). doi: 10.1007/978-3-319-45177-0_7 CrossRefGoogle Scholar
  8. 8.
    Fitime, L.F., Roux, O., Guziolowski, C., Paulevé, L.: Identification of bifurcations in biological regulatory networks using answer-set programming. In: Constraint-Based Methods for Bioinformatics Workshop (2016)Google Scholar
  9. 9.
    Folschette, M., Paulevé, L., Magnin, M., Roux, O.: Sufficient conditions for reachability in automata networks with priorities. Theor. Comput. Sci. 608, 66–83 (2015). Part 1, From Computer Science to Biology and BackMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gonzalez, A.G., Naldi, A., Sánchez, L., Thieffry, D., Chaouiya, C.: Ginsim: A software suite for the qualitative modelling, simulation and analysis of regulatory networks. Biosystems 84(2), 91–100 (2006). Dynamical Modeling of Biological Regulatory NetworksCrossRefGoogle Scholar
  11. 11.
    Grieco, L., Calzone, L., Bernard-Pierrot, I., Radvanyi, F., Kahn-Perlès, B., Thieffry, D.: Integrative modelling of the influence of MAPK network on cancer cell fate decision. PLoS Comput. Biol. 9(10), e1003286 (2013)CrossRefGoogle Scholar
  12. 12.
    Grunberg, R., Nilges, M., Leckner, J.: Biskit – a software platform for structural bioinformatics. Bioinformatics 23(6), 769–770 (2007)CrossRefGoogle Scholar
  13. 13.
    Helikar, T., Kowal, B., McClenathan, S., Bruckner, M., Rowley, T., Madrahimov, A., Wicks, B., Shrestha, M., Limbu, K., Rogers, J.A.: The cell collective: toward an open and collaborative approach to systems biology. BMC Syst. Biol. 6(1), 96 (2012)CrossRefGoogle Scholar
  14. 14.
    Klarner, H., Streck, A., Siebert, H.: PyBoolNet: a python package for the generation, analysis and visualization of boolean networks. Bioinformatics 33, 770–772 (2016)Google Scholar
  15. 15.
    Leprevost, F.V., et al.: Biocontainers: an open-source and community-driven framework for software standardization. Bioinform. (Oxford Engl.) 33, 2580–2582 (2017)Google Scholar
  16. 16.
    LIP6/Move. Its tools. http://ddd.lip6.fr/itstools.php
  17. 17.
    MacNamara, A., Terfve, C., Henriques, D., Bernabé, B.P., Saez-Rodriguez, J.: State-time spectrum of signal transduction logic models. Phys. Biol. 9(4), 45003 (2012)CrossRefGoogle Scholar
  18. 18.
    Mussel, C., Hopfensitz, M., Kestler, H.A.: BoolNet - an R package for generation, reconstruction and analysis of boolean networks. Bioinformatics 26(10), 1378–1380 (2010)CrossRefGoogle Scholar
  19. 19.
    Paulevé, L.: Goal-oriented reduction of automata networks. In: Bartocci, E., Lio, P., Paoletti, N. (eds.) CMSB 2016. LNCS, vol. 9859, pp. 252–272. Springer, Cham (2016). doi: 10.1007/978-3-319-45177-0_16 CrossRefGoogle Scholar
  20. 20.
    Paulevé, L., Andrieux, G., Koeppl, H.: Under-approximating cut sets for reachability in large scale automata networks. In: Sharygina, N., Veith, H. (eds.) Computer Aided Verification. LNCS, vol. 8044, pp. 69–84. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Paulevé, L., Magnin, M., Roux, O.: Static analysis of biological regulatory networks dynamics using abstract interpretation. Math. Struct. Comput.Sci. 22(4), 651–685 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Rougny, A., Froidevaux, C., Calzone, L., Paulevé, L.: Qualitative dynamics semantics for SBGN process description. BMC Syst. Biol. 10(1), 1–24 (2016)CrossRefGoogle Scholar
  23. 23.
    Samaga, R., Saez-Rodriguez, J., Alexopoulos, L.G., Sorger, P.K., Klamt, S.: The logic of EGFR/ERBB signaling: theoretical properties and analysis of high-throughput data. PLoS Comput. Biol. 5(8), e1000438 (2009)CrossRefGoogle Scholar
  24. 24.
    Schoeberl, B., Eichler-Jonsson, C., Gilles, E.D., Müller, G.: Computational modeling of the dynamics of the map kinase cascade activated by surface and internalized egf receptors. Nature Biotechnol. 20(4), 370–375 (2002)CrossRefGoogle Scholar
  25. 25.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.CNRS, LRI UMR 8623, Univ. Paris-Sud – CNRSUniversité Paris-SaclayOrsayFrance

Personalised recommendations