KaDE: A Tool to Compile Kappa Rules into (Reduced) ODE Models

  • Ferdinanda Camporesi
  • Jérôme FeretEmail author
  • Kim Quyên Lý
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10545)


Kappa is a formal language that can be used to model systems of biochemical interactions among proteins. It offers several semantics to describe the behaviour of Kappa models at different levels of abstraction. Each Kappa model is a set of context-free rewrite rules. One way to understand the semantics of a Kappa model is to read its rules as an implicit description of a (potentially infinite) reaction network. KaDE is interpreting this definition to compile Kappa models into reaction networks (or equivalently into sets of ordinary differential equations). KaDE uses a static analysis that identifies pairs of sites that are indistinguishable from the rules point of view, to infer backward and forward bisimulations, hence reducing the size of the underlying reaction networks without having to generate them explicitly. In this paper, we describe the main current functionalities of KaDE and we give some benchmarks on case studies.


Forward Bisimulation Kappa Model Reaction Network Context-free Rewrite Rules BioNetGen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Danos, V., Laneve, C.: Formal molecular biology. TCS 325(1), 69–110 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Feret, J.: Gkappa: a library to generate site graphs with graphviz.
  3. 3.
    Danos, V., Feret, J., Fontana, W., Krivine, J.: Scalable simulation of cellular signaling networks. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 139–157. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-76637-7_10 CrossRefGoogle Scholar
  4. 4.
    Feret, J., Danos, V., Krivine, J., Harmer, R., Fontana, W.: Internal coarse-graining of molecular systems. PNAS 106, 6453–6458 (2009)CrossRefGoogle Scholar
  5. 5.
    Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Abstracting the differential semantics of rule-based models: exact and automated model reduction. In: Jouannaud, J.P. (ed.) Proceedings of LICS 2010, pp. 362–381. IEEE Computer Society (2010)Google Scholar
  6. 6.
    Boutillier, P., Feret, J., Krivine, J., Kim Lý, Q.: Kasim development homepage.
  7. 7.
    Monagan, M.B., Geddes, K.O., Heal, K.M., Labahn, G., Vorkoetter, S.M., McCarron, J., DeMarco, P.: Maple 10 Programming Guide. Maplesoft (2005)Google Scholar
  8. 8.
    Wolfram Research, Inc.: Mathematica (2017)Google Scholar
  9. 9.
    MATLAB version 9.2: The MathWorks Inc., Natick, Massachusetts (2017)Google Scholar
  10. 10.
    Eaton, J.W., Bateman, D., Hauberg, S., Wehbring, R.: GNU Octave Version 4.0.0 Manual: A High-Level Interactive Language for Numerical Computations. Free Software Foundation (2015)Google Scholar
  11. 11.
    Blinov, M., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: Bionetgen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20(17), 3289–3291 (2004)CrossRefGoogle Scholar
  12. 12.
    Faeder, J.R., Blinov, M.L., Hlavacek, W.S.: Rule-based modeling of biochemical systems with bionetgen. Methods Mol. Biol. 500, 113–167 (2009)CrossRefGoogle Scholar
  13. 13.
    Hucka, M., Bergmann, F.T., Hoops, S., Keating, S.M., Sahle, S., Schaff, J.C., Smith, L.P., Wilkinson, D.J.: The systems biology markup language (sbml): language specification for level 3 version 1 core (2010)Google Scholar
  14. 14.
    Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: ERODE: a tool for the evaluation and reduction of ordinary differential equations. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 310–328. Springer, Heidelberg (2017). doi: 10.1007/978-3-662-54580-5_19 CrossRefGoogle Scholar
  15. 15.
    Dräger, A., Planatscher, H., Wouamba, D.M., Schröder, A., Hucka, M., Endler, L., Golebiewski, M., Müller, W., Zell, A.: SBML2LaTeX: conversion of SBML files into human-readable reports. Bioinformatics 25(11), 1455–1456 (2009)CrossRefGoogle Scholar
  16. 16.
    Funahashi, A., Matsuoka, Y., Jouraku, A., Morohashi, M., Kikuchi, N., Kitano, H.: Celldesigner 3.5: A versatile modeling tool for biochemical networks. Proc. IEEE 96, 1254–1265 (2008)CrossRefGoogle Scholar
  17. 17.
    Boutillier, P., Ehrhard, T., Krivine, J.: Incremental update for graph rewriting. In: Yang, H. (ed.) ESOP 2017. LNCS, vol. 10201, pp. 201–228. Springer, Heidelberg (2017). doi: 10.1007/978-3-662-54434-1_8 CrossRefGoogle Scholar
  18. 18.
    Sneddon, M.W., Faeder, J.R., Emonet, T.: Efficient modeling, simulation and coarse-graining of biological complexity with nfsim. Nat. Meth. 8, 177–183 (2011)CrossRefGoogle Scholar
  19. 19.
    Camporesi, F., Feret, J.: Formal reduction for rule-based models. ENTCS 276, 29–59 (2011). Proc. MFPS XXVIIMathSciNetzbMATHGoogle Scholar
  20. 20.
    Camporesi, F., Feret, J., Koeppl, H., Petrov, T.: Combining model reductions. ENTCS 265, 73–96 (2010). Proc. MFPS XXVIMathSciNetzbMATHGoogle Scholar
  21. 21.
    Feret, J.: An algebraic approach for inferring and using symmetries in rule-based models. ENTCS 316, 45–65 (2015). Proc. SASB 2014zbMATHGoogle Scholar
  22. 22.
    Buchholz, P.: Bisimulation relations for weighted automata. Theor. Comput. Sci. 393(1–3), 109–123 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Feret, J., Koeppl, H., Petrov, T.: Stochastic fragments: A framework for the exact reduction of the stochastic semantics of rule-based models. Int. J. Softw. Inform. 7(4), 527–604 (2013)Google Scholar
  24. 24.
    Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. J. Appl. Probab. 31(1), 59–75 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Camporesi, F., Feret, J., Lý, K.Q.: KaDE: a tool to compile kappa rules into (reduced) ode models: Supplementary information.
  26. 26.
    Petrov, T., Feret, J., Koeppl, H.: Reconstructing species-based dynamics from reduced stochastic rule-based models. In: Laroque, C., Himmelspach, J., Pasupathy, R., Rose, O., Uhrmacher, A.M. (eds.) Proceedings of WSC 2012, WSC (2012)Google Scholar
  27. 27.
    Oury, N., Pedersen, M., Petersen, R.L.: Canonical labelling of site graphs. In Petre, I. (ed.) Proceedings of CompMod 2013, EPTCS, vol. 116, pp. 13–28 (2013)Google Scholar
  28. 28.
    Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Forward and backward bisimulations for chemical reaction networks. In: Aceto, L., de Frutos-Escrig, D. (eds.) Proceedings of CONCUR 2015, vol. 42, pp. 226–239. LIPIcs., Schloss Dagstuhl (2015)Google Scholar
  29. 29.
    Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Efficient syntax-driven lumping of differential equations. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 93–111. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49674-9_6 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ferdinanda Camporesi
    • 1
    • 2
  • Jérôme Feret
    • 1
    • 2
    Email author
  • Kim Quyên Lý
    • 1
    • 2
  1. 1.INRIAÉcole normale supérieure, CNRS, PSL Research UniversityParisFrance
  2. 2.Département d’informatique de l’ÉNSÉcole normale supérieure, CNRS, PSL Research UniversityParisFrance

Personalised recommendations