Advertisement

TransferEntropyPT: An R Package to Assess Transfer Entropies via Permutation Tests

  • Patrick Boba
  • Kay Hamacher
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10545)

Abstract

The package TransferEntropyPT provides R functions to calculate the transfer entropy (TE) [6] for time series of (binned) data. The package provides a function to assess the statistical significance of the TE using permutation tests on the sequential data of the time series. The underlying code base is written in C++ for computational efficiency and makes use of the boost and OpenMP libraries for parallelization of the data-parallel tasks in the permutation tests. In addition to p-values from hypothesis tests on independence, the package provides direct access to the percentiles themselves. An anticipatory toy model, as well as a biological network is used as show cases. Here, every time series concentrations of a single molecular species is tested and assessed against each other.

Notes

Acknowledgments

The authors gratefully acknowledge (partial) financial support by the LOEWE projects iNAPO & compuGene of the Hessen State Ministry of Higher Education, Research and the Arts. The authors are grateful for the comments of anonymous referees that improved the manuscript and the style of presentation.

References

  1. 1.
    Bauer, M., Cox, J.W., Caveness, M.H.: Finding the direction of disturbance propagation in a chemical process using transfer entropy. Control Syst. 15(1), 12–21 (2007). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4039335 CrossRefGoogle Scholar
  2. 2.
    Boba, P., Bollmann, D., Schoepe, D., Wester, N., Wiesel, J., Hamacher, K.: Efficient computation and statistical assessment of transfer entropy. Front. Comput. Phys. 3, 10 (2015). http://journal.frontiersin.org/article/10.3389/fphy.2015.00010/abstract Google Scholar
  3. 3.
    Boba, P., Hamacher, K.: Accompanying supplemental material to this paper. https://www.cbs.tu-darmstadt.de/TransferEntropy/
  4. 4.
    Hlaváčková-Schindler, K., Paluš, M., Vejmelka, M., Bhattacharya, J.: Causality detection based on information-theoretic approaches in time series analysis. Physics Rep. 441(1), 1–46 (2007)CrossRefGoogle Scholar
  5. 5.
    Paluš, M.: Detecting phase synchronization in noisy systems. Phys. Lett. A 235(4), 341–351 (1997). http://www.sciencedirect.com/science/article/pii/S037596019700635X MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Schreiber, T.: Measuring information transfer. Phys. Rev. Lett. 85(2), 461–464 (2000). http://prl.aps.org/abstract/PRL/v85/i2/p461_1 MathSciNetCrossRefGoogle Scholar
  7. 7.
    Tung, T.Q., Ryu, T., Lee, K.H., Lee, D.: Inferring gene regulatory networks from microarray time series data using transfer entropy. In: Twentieth IEEE International Symposium on Computing Based Medical Systems, pp. 383–388, June 2007. http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4262679
  8. 8.
    Weil, P., Hoffgaard, F., Hamacher, K.: Estimating sufficient statistics in co-evolutionary analysis by mutual information. Comput. Biol. Chem. 33(6), 440–444 (2009). http://www.ncbi.nlm.nih.gov/pubmed/19910254, http://www.sciencedirect.com/science/article/pii/S1476927109001108 MathSciNetCrossRefGoogle Scholar
  9. 9.
    Wollstadt, P., Martínez-Zarzuela, M., Vicente, R., Díaz-Pernas, F.J., Wibral, M.: Efficient transfer entropy analysis of non-stationary neural time series. PLoS ONE 9, 27 (2014). http://arxiv.org/abs/1401.4068

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Technische Universität DarmstadtDarmstadtGermany

Personalised recommendations