Detecting Toxicity Pathways with a Formal Framework Based on Equilibrium Changes

  • Benjamin Miraglio
  • Gilles Bernot
  • Jean-Paul Comet
  • Christine Risso-de Faverney
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10545)


Toxicology aims at studying the adverse effects of exogenous chemicals on organisms. As these effects mainly concern metabolic pathways, reasoning about toxicity would involve metabolism modeling approaches. Usually, metabolic network models approaches are rule-based and describe chemical reactions, indirectly depicting equilibria as results of competing rule kinetics. By altering these kinetics, an exogenous compound can shift the system equilibria and induce toxicity. As equilibria are kept implicit, the identification of possible toxicity pathways is hindered as they require a fine understanding of chemical reactions dynamics to infer possible equilibria disruptions. Paradoxically, the toxicity pathways are based on a succession of very abstract (coarse grained) events. To reduce this mismatch, we propose a more abstract framework making equilibria first-class citizens. Our rules describe qualitative equilibrium changes and the chaining of rules is controlled by constraints expressed in extended temporal logic. This higher abstraction level fosters the detection of toxicity pathways, as we will show through an example of endocrine disruption of the thyroid hormone system.


Discrete dynamic systems Rule-based modeling Temporal logic Computational toxicology 


  1. 1.
    Barter, R.A., Klaassen, C.D.: Reduction of thyroid hormone levels and alteration of thyroid function by four representative UDP-glucuronosyltransferase inducers in rats. Toxicol. Appl. Pharmacol. 128(1), 9–17 (1994)CrossRefGoogle Scholar
  2. 2.
    Bernot, G., Comet, J.P., Richard, A., Guespin, J.: Application of formal methods to biological regulatory networks: extending Thomas’ asynchronous logical approach with temporal logic. J. Theor. Biol. 229(3), 339–347 (2004)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chabrier-Rivier, N., Fages, F., Soliman, S.: The biochemical abstract machine BIOCHAM. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS, vol. 3082, pp. 172–191. Springer, Heidelberg (2005). doi:10.1007/978-3-540-25974-9_14 CrossRefGoogle Scholar
  4. 4.
    Chaki, S., Clarke, E.M., Ouaknine, J., Sharygina, N., Sinha, N.: State/Event-based software model checking. In: Boiten, E.A., Derrick, J., Smith, G. (eds.) IFM 2004. LNCS, vol. 2999, pp. 128–147. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24756-2_8 CrossRefGoogle Scholar
  5. 5.
    Danos, V., Feret, J., Fontana, W., Harmer, R., Hayman, J., Krivine, J., Thompson-Walsh, C., Winskel, G.: Graphs, rewriting and pathway reconstruction for rule-based models. In: LIPIcs-Leibniz International Proceedings in Informatics, vol 18. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2012)Google Scholar
  6. 6.
    Dentice, M., Salvatore, D.: Local impact of thyroid hormone inactivation deiodinases: the balance of thyroid hormone. J. Endocrinol. 209(3), 273–282 (2011)CrossRefGoogle Scholar
  7. 7.
    Fages, F., Soliman, S.: Formal cell biology in biocham. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 54–80. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68894-5_3 CrossRefGoogle Scholar
  8. 8.
    Isler, H., Leblond, C., Axelrad, A.: Influence of age and of iodine intake on the production of thyroid tumors in the rat 2. J. Natl. Cancer Inst. 21(6), 1065–1081 (1958)Google Scholar
  9. 9.
    Kavlock, R.J., Ankley, G., Blancato, J., Breen, M., Conolly, R., Dix, D., Houck, K., Hubal, E., Judson, R., Rabinowitz, J., et al.: Computational toxicologya state of the science mini review. Toxicol. Sci. 103(1), 14–27 (2008)CrossRefGoogle Scholar
  10. 10.
    Kopp, P.: Thyroid Hormone Synthesis. Werner and Ingbars The Thyroid. A Fundamental and Clinical Text, 10th edn., pp. 48–74 (2012)Google Scholar
  11. 11.
    Maia, A.L., Goemann, I.M., Meyer, E.L.S., Wajner, S.M.: Type 1 iodothyronine deiodinase in human physiology and disease deiodinases: the balance of thyroid hormone. J. Endocrinol. 209(3), 283–297 (2011)CrossRefGoogle Scholar
  12. 12.
    Marians, R., Ng, L., Blair, H., Unger, P., Graves, P., Davies, T.: Defining thyrotropin-dependent and-independent steps of thyroid hormone synthesis by using thyrotropin receptor-null mice. Proc. Natl. Acad. Sci. 99(24), 15776–15781 (2002)CrossRefGoogle Scholar
  13. 13.
    McClain, R.M.: Thyroid gland neoplasia: non-genotoxic mechanisms. Toxicol. Lett. 64, 397–408 (1992)CrossRefGoogle Scholar
  14. 14.
    Moeller, L.C., Cao, X., Dumitrescu, A.M., Seo, H., Refetoff, S.: Thyroid hormone mediated changes in gene expression can be initiated by cytosolic action of the thyroid hormone receptor beta through the phosphatidylinositol 3-kinase pathway. Nucl. Recept. Sig. 4, e020 (2006)Google Scholar
  15. 15.
    Nagasaki, M., Onami, S., Miyano, S., Kitano, H.: Bio-calculus: Its concept and molecular interaction. Genome Inf. 10, 133–143 (1999)Google Scholar
  16. 16.
    Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: Bioambients: an abstraction for biological compartments. Theoret. Comput. Sci. 325(1), 141–167 (2004)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Rosene, M.L., Wittmann, G., Arrojo e Drigo, R., Singru, P.S., Lechan, R.M., Bianco, A.C.: Inhibition of the type 2 iodothyronine deiodinase underlies the elevated plasma TSH associated with amiodarone treatment. Endocrinology 151(12), 5961–5970 (2010)CrossRefGoogle Scholar
  18. 18.
    Snoussi, E.H.: Qualitative dynamics of piecewise-linear differential equations: a discrete mapping approach. Dyn. Stab. Syst. 4(3–4), 565–583 (1989)MathSciNetMATHGoogle Scholar
  19. 19.
    Talcott, C.: Pathway logic. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 21–53. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68894-5_2 CrossRefGoogle Scholar
  20. 20.
    Thomas, R.: Regulatory networks seen as asynchronous automata: a logical description. J. Theor. Biol. 153(1), 1–23 (1991)CrossRefGoogle Scholar
  21. 21.
    Visser, T.J.: Role of sulfation in thyroid hormone metabolism. Chem. Biol. Interact. 92(1–3), 293–303 (1994)CrossRefGoogle Scholar
  22. 22.
    Williams, G.R., Bassett, J.D.: Local control of thyroid hormone action: role of type 2 deiodinase deiodinases: the balance of thyroid hormone. J. Endocrinol. 209(3), 261–272 (2011)CrossRefGoogle Scholar
  23. 23.
    Zoeller, R.T., Tan, S.W., Tyl, R.W.: General background on the hypothalamic-pituitary-thyroid (HPT) axis. Crit. Rev. Toxicol. 37(1–2), 11–53 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Benjamin Miraglio
    • 1
  • Gilles Bernot
    • 1
  • Jean-Paul Comet
    • 1
  • Christine Risso-de Faverney
    • 2
  1. 1.Université Côte d’Azur, CNRS, I3SSophia AntipolisFrance
  2. 2.Université Côte d’Azur, CNRS, ECOMERSNiceFrance

Personalised recommendations