Temporal Reprogramming of Boolean Networks

  • Hugues Mandon
  • Stefan Haar
  • Loïc Paulevé
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10545)


Cellular reprogramming, a technique that opens huge opportunities in modern and regenerative medicine, heavily relies on identifying key genes to perturb. Most of computational methods focus on finding mutations to apply to the initial state in order to control which attractor the cell will reach. However, it has been shown, and is proved in this article, that waiting between the perturbations and using the transient dynamics of the system allow new reprogramming strategies. To identify these temporal perturbations, we consider a qualitative model of regulatory networks, and rely on Petri nets to model their dynamics and the putative perturbations. Our method establishes a complete characterization of temporal perturbations, whether permanent (mutations) or only temporary, to achieve the existential or inevitable reachability of an arbitrary state of the system. We apply a prototype implementation on small models from the literature and show that we are able to derive temporal perturbations to achieve trans-differentiation.


  1. 1.
    Abou-Jaoudé, W., Monteiro, P.T., Naldi, A., Grandclaudon, M., Soumelis, V., Chaouiya, C., Thieffry, D.: Model checking to assess t-helper cell plasticity. Frontiers Bioeng. Biotechnol. 2 (2015)Google Scholar
  2. 2.
    Bernardinello, L., De Cindio, F.: A survey of basic net models and modular net classes. In: Rozenberg, G. (ed.) Advances in Petri Nets 1992. LNCS, vol. 609, pp. 304–351. Springer, Heidelberg (1992). doi: 10.1007/3-540-55610-9_177 CrossRefGoogle Scholar
  3. 3.
    Chang, R., Shoemaker, R., Wang, W.: Systematic search for recipes to generate induced pluripotent stem cells. PLoS Comput. Biol. 7(12), e1002300 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chaouiya, C., Naldi, A., Remy, E., Thieffry, D.: Petri net representation of multi-valued logical regulatory graphs. Nat. Comput. 10(2), 727–750 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chatain, T., Haar, S., Jezequel, L., Paulevé, L., Schwoon, S.: Characterization of reachable attractors using petri net unfoldings. In: Mendes, P., Dada, J.O., Smallbone, K. (eds.) CMSB 2014. LNCS, vol. 8859, pp. 129–142. Springer, Cham (2014). doi: 10.1007/978-3-319-12982-2_10 Google Scholar
  6. 6.
    Cohen, D.P.A., Martignetti, L., Robine, S., Barillot, E., Zinovyev, A., Calzone, L.: Mathematical modelling of molecular pathways enabling tumour cell invasion and migration. PLOS Comput. Biol. 11(11), 1–29 (2015)CrossRefGoogle Scholar
  7. 7.
    Crespo, I., Perumal, T.M., Jurkowski, W., del Sol, A.: Detecting cellular reprogramming determinants by differential stability analysis of gene regulatory networks. BMC Syst. Biol. 7(1), 140 (2013)CrossRefGoogle Scholar
  8. 8.
    del Sol, A., Buckley, N.J.: Concise review: a population shift view of cellular reprogramming. Stem Cells 32(6), 1367–1372 (2014)CrossRefGoogle Scholar
  9. 9.
    Graf, T., Enver, T.: Forcing cells to change lineages. Nature 462(7273), 587–594 (2009)CrossRefGoogle Scholar
  10. 10.
    Hannam, R., Annibale, A., Kuehn, R.: Cell reprogramming modelled as transitions in a hierarchy of cell cycles. ArXiv e-prints, December 2016Google Scholar
  11. 11.
    Herrmann, F., Groß, A., Zhou, D., Kestler, H.A., Kühl, M.: A boolean model of the cardiac gene regulatory network determining first, second heart field identity. PLOS ONE 7(10), 1–10 (2012)CrossRefGoogle Scholar
  12. 12.
    Mendoza, L.: A network model for the control of the differentiation process in th cells. Biosystems 84(2), 101–114 (2006). Dynamical Modeling of Biological Regulatory NetworksCrossRefGoogle Scholar
  13. 13.
    Morris, M.K., Saez-Rodriguez, J., Sorger, P.K., Lauffenburger, D.A.: Logic-based models for the analysis of cell signaling networks. Biochemistry 49(15), 3216–3224 (2010). PMID: 20225868CrossRefGoogle Scholar
  14. 14.
    Ronquist, S., Patterson, G., Brown, M., Chen, H., Bloch, A., Muir, L., Brockett, R., Rajapakse, I.: An Algorithm for Cellular Reprogramming. ArXiv e-prints, March 2017Google Scholar
  15. 15.
    Sahin, O., Frohlich, H., Lobke, C., Korf, U., Burmester, S., Majety, M., Mattern, J., Schupp, I., Chaouiya, C., Thieffry, D., Poustka, A., Wiemann, S., Beissbarth, T., Arlt, D.: Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance. BMC Syst. Biol. 3(1), 1–20 (2009)CrossRefGoogle Scholar
  16. 16.
    Samaga, R., Von Kamp, A., Klamt, S.: Computing combinatorial intervention strategies and failure modes in signaling networks. J. Comput. Biol. 17(1), 39–53 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Takahashi, K., Yamanaka, S.: A decade of transcription factor-mediated reprogramming to pluripotency. Nat. Rev. Mol. Cell Biol. 17(3), 183–193 (2016)CrossRefGoogle Scholar
  18. 18.
    Wang, R.-S., Saadatpour, A., Albert, R.: Boolean modeling in systems biology: an overview of methodology and applications. Phys. Biol. 9(5), 055001 (2012)CrossRefGoogle Scholar
  19. 19.
    Zañudo, J.G.T., Albert, R.: Cell fate reprogramming by control of intracellular network dynamics. PLOS Comput. Biol. 11(4), 1–24 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.LSV, ENS Cachan, INRIA, CNRSUniversité Paris-SaclayCachanFrance
  2. 2.CNRS, LRI UMR 8623, Univ. Paris-SudUniversité Paris-SaclayOrsayFrance

Personalised recommendations