Aspects of the Cooperative Card Game Hanabi

  • Mark J. H. van den Bergh
  • Anne Hommelberg
  • Walter A. Kosters
  • Flora M. Spieksma
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 765)


We examine the cooperative card game Hanabi. Players can only see the cards of the other players, but not their own. Using hints partial information can be revealed. We show some combinatorial properties, and develop AI (Artificial Intelligence) players that use rule-based and Monte Carlo methods.



The authors would like to thank Hendrik Jan Hoogeboom, as well as the anonymous contributors from [10]. Moreover, they thank the reviewers for bringing [5] to our attention.


  1. 1.
    Baffier, J.-F., Chiu, M.-K., Diez, Y., Korman, M., Mitsou, V., van Renssen, A., Roeloffzen, M., Uno, Y.: Hanabi is NP-complete, even for cheaters who look at their cards. In: Proceedings of 8th International Conference on Fun with Algorithms (FUN 2016), Leibniz International Proceedings in Informatics (LIPIcs) 49, pp. 4:1–4:17 (2016)Google Scholar
  2. 2.
    van den Bergh, M.J.H.: Hanabi, a cooperative game of fireworks. Bachelor thesis, Leiden University (2015).
  3. 3.
    BoardGameGeek, website. Accessed 3 Oct 2017
  4. 4.
    Browne, C., Powley, E., Whitehouse, D., Lucas, S., Cowling, P.I., Rohlfshagen, P., Tavener, S., Perez, D., Samothrakis, S., Colton, S.: A survey of Monte Carlo Tree Search methods. IEEE Trans. Comput. Intell. AI Games 4, 1–43 (2012)CrossRefGoogle Scholar
  5. 5.
    Cox, C., De Silva, J., Deorsey, P., Kenter, F.H.J., Retter, T., Tobin, J.: How to make the perfect fireworks display: two strategies for Hanabi. Math. Mag. 88, 323–336 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    van Ditmarsch, H., Kooi, B.: One Hundred Prisoners and a Light Bulb. Springer, Switzerland (2015)CrossRefzbMATHGoogle Scholar
  7. 7.
    Osawa, H., Hanabi, S.: Estimating hands by opponent’s actions in cooperative game with incomplete information. In: Proceedings of the Workshop at the Twenty-Ninth AAAI Conference on Artificial Intelligence: Computer Poker and Imperfect Information, pp. 37–43 (2015)Google Scholar
  8. 8.
    R & R Games, website. Accessed 3 Oct 2017
  9. 9.
    Ruiz, S.: An algebraic identity leading to Wilson’s theorem. Math. Gaz. 80, 579–582 (1996)CrossRefGoogle Scholar
  10. 10.
    StackExchange, website Sequences that contain subsequence 1,2,3. Accessed 3 Oct 2017

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mark J. H. van den Bergh
    • 1
    • 2
  • Anne Hommelberg
    • 1
  • Walter A. Kosters
    • 1
  • Flora M. Spieksma
    • 2
  1. 1.Leiden Institute of Advanced Computer ScienceUniversiteit LeidenLeidenThe Netherlands
  2. 2.Mathematical InstituteUniversiteit LeidenLeidenThe Netherlands

Personalised recommendations