Mobile Radio Tomography: Agent-Based Imaging

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 765)


Mobile radio tomography applies moving agents that perform wireless signal strength measurements in order to reconstruct an image of objects inside an area of interest. We propose a toolchain to facilitate automated agent planning, data collection, and dynamic tomographic reconstruction. Preliminary experiments show that the approach is feasible and results in smooth images that clearly depict objects at the expected locations when using missions that sufficiently cover the area of interest.


Radio tomography Intelligent agents Wireless signal strength measurements Image reconstruction Localization and mapping 


  1. 1.
    Andersen, J.B., Rappaport, T.S., Yoshida, S.: Propagation measurements and models for wireless communications channels. IEEE Commun. Mag. 33, 42–49 (1995)CrossRefGoogle Scholar
  2. 2.
    Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford (1996)zbMATHGoogle Scholar
  3. 3.
    Björck, A.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996)CrossRefzbMATHGoogle Scholar
  4. 4.
    Bovik, A.C.: Handbook of Image and Video Processing. Academic Press, New York (2005)zbMATHGoogle Scholar
  5. 5.
    Branke, J., Deb, K., Dierolf, H., Osswald, M.: Finding knees in multi-objective optimization. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 722–731. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-30217-9_73 CrossRefGoogle Scholar
  6. 6.
    Bredström, D., Rönnqvist, M.: Combined vehicle routing and scheduling with temporal precedence and synchronization constraints. Eur. J. Oper. Res. 191, 19–31 (2008)CrossRefzbMATHGoogle Scholar
  7. 7.
    De Wilde, B., ter Mors, A.W., Witteveen, C.: Push and rotate: Cooperative multi-agent path planning. In: Proceedings of the 2013 International Conference on Autonomous Agents and Multi-agent Systems, pp. 87–94. International Foundation for Autonomous Agents and Multiagent Systems (2013)Google Scholar
  8. 8.
    Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume measure as selection criterion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg (2005). doi: 10.1007/978-3-540-31880-4_5 CrossRefGoogle Scholar
  9. 9.
    Golden, B.L., Raghavan, S., Wasil, E.A.: The Vehicle Routing Problem: Latest Advances and New Challenges. Springer, Heidelberg (2008). doi: 10.1007/978-0-387-77778-8 CrossRefzbMATHGoogle Scholar
  10. 10.
    Helwerda, L.: Mobile radio tomography: Autonomous vehicle planning for dynamic sensor positions. Master’s thesis, LIACS, Universiteit Leiden (2016)Google Scholar
  11. 11.
    Menegatti, E., Zanella, A., Zilli, S., Zorzi, F., Pagello, E.: Range-only SLAM with a mobile robot and a wireless sensor networks. In: Proceedings of the 2009 IEEE International Conference on Robotics and Automation, pp. 8–14 (2009)Google Scholar
  12. 12.
    Sharon, G., Stern, R., Felner, A., Sturtevant, N.R.: Conflict-based search for optimal multi-agent pathfinding. Artif. Intell. 219, 40–66 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Standley, T.S.: Finding optimal solutions to cooperative pathfinding problems. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, pp. 173–178 (2010)Google Scholar
  14. 14.
    Van der Meij, T.: Mobile radio tomography: reconstructing and visualizing objects in wireless networks with dynamically positioned sensors. Master’s thesis, LIACS, Universiteit Leiden (2016)Google Scholar
  15. 15.
    Wilson, J., Patwari, N.: Radio tomographic imaging with wireless networks. IEEE Trans. Mob. Comput. 9, 621–632 (2010)CrossRefGoogle Scholar
  16. 16.
    Wilson, J., Patwari, N., Guevara Vasquez, F.: Regularization methods for radio tomographic imaging. In: Virginia Tech Symposium on Wireless Personal Communications (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Mathematical InstituteLeidenThe Netherlands
  2. 2.CWIAmsterdamThe Netherlands
  3. 3.Leiden Institute of Advanced Computer Science (LIACS)LeidenThe Netherlands

Personalised recommendations