Skip to main content

Mobile Radio Tomography: Agent-Based Imaging

  • Conference paper
  • First Online:
  • 625 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 765))

Abstract

Mobile radio tomography applies moving agents that perform wireless signal strength measurements in order to reconstruct an image of objects inside an area of interest. We propose a toolchain to facilitate automated agent planning, data collection, and dynamic tomographic reconstruction. Preliminary experiments show that the approach is feasible and results in smooth images that clearly depict objects at the expected locations when using missions that sufficiently cover the area of interest.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andersen, J.B., Rappaport, T.S., Yoshida, S.: Propagation measurements and models for wireless communications channels. IEEE Commun. Mag. 33, 42–49 (1995)

    Article  Google Scholar 

  2. Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  3. Björck, A.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996)

    Book  MATH  Google Scholar 

  4. Bovik, A.C.: Handbook of Image and Video Processing. Academic Press, New York (2005)

    MATH  Google Scholar 

  5. Branke, J., Deb, K., Dierolf, H., Osswald, M.: Finding knees in multi-objective optimization. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 722–731. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30217-9_73

    Chapter  Google Scholar 

  6. Bredström, D., Rönnqvist, M.: Combined vehicle routing and scheduling with temporal precedence and synchronization constraints. Eur. J. Oper. Res. 191, 19–31 (2008)

    Article  MATH  Google Scholar 

  7. De Wilde, B., ter Mors, A.W., Witteveen, C.: Push and rotate: Cooperative multi-agent path planning. In: Proceedings of the 2013 International Conference on Autonomous Agents and Multi-agent Systems, pp. 87–94. International Foundation for Autonomous Agents and Multiagent Systems (2013)

    Google Scholar 

  8. Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume measure as selection criterion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg (2005). doi:10.1007/978-3-540-31880-4_5

    Chapter  Google Scholar 

  9. Golden, B.L., Raghavan, S., Wasil, E.A.: The Vehicle Routing Problem: Latest Advances and New Challenges. Springer, Heidelberg (2008). doi:10.1007/978-0-387-77778-8

    Book  MATH  Google Scholar 

  10. Helwerda, L.: Mobile radio tomography: Autonomous vehicle planning for dynamic sensor positions. Master’s thesis, LIACS, Universiteit Leiden (2016)

    Google Scholar 

  11. Menegatti, E., Zanella, A., Zilli, S., Zorzi, F., Pagello, E.: Range-only SLAM with a mobile robot and a wireless sensor networks. In: Proceedings of the 2009 IEEE International Conference on Robotics and Automation, pp. 8–14 (2009)

    Google Scholar 

  12. Sharon, G., Stern, R., Felner, A., Sturtevant, N.R.: Conflict-based search for optimal multi-agent pathfinding. Artif. Intell. 219, 40–66 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Standley, T.S.: Finding optimal solutions to cooperative pathfinding problems. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, pp. 173–178 (2010)

    Google Scholar 

  14. Van der Meij, T.: Mobile radio tomography: reconstructing and visualizing objects in wireless networks with dynamically positioned sensors. Master’s thesis, LIACS, Universiteit Leiden (2016)

    Google Scholar 

  15. Wilson, J., Patwari, N.: Radio tomographic imaging with wireless networks. IEEE Trans. Mob. Comput. 9, 621–632 (2010)

    Article  Google Scholar 

  16. Wilson, J., Patwari, N., Guevara Vasquez, F.: Regularization methods for radio tomographic imaging. In: Virginia Tech Symposium on Wireless Personal Communications (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter A. Kosters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Batenburg, K.J., Helwerda, L., Kosters, W.A., van der Meij, T. (2017). Mobile Radio Tomography: Agent-Based Imaging. In: Bosse, T., Bredeweg, B. (eds) BNAIC 2016: Artificial Intelligence. BNAIC 2016. Communications in Computer and Information Science, vol 765. Springer, Cham. https://doi.org/10.1007/978-3-319-67468-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67468-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67467-4

  • Online ISBN: 978-3-319-67468-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics