Whole Brain Parcellation with Pathology: Validation on Ventriculomegaly Patients

  • Aaron Carass
  • Muhan Shao
  • Xiang Li
  • Blake E. Dewey
  • Ari M. Blitz
  • Snehashis Roy
  • Dzung L. Pham
  • Jerry L. Prince
  • Lotta M. Ellingsen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10530)

Abstract

Numerous brain disorders are associated with ventriculomegaly; normal pressure hydrocephalus (NPH) is one example. NPH presents with dementia-like symptoms and is often misdiagnosed as Alzheimer’s due to its chronic nature and nonspecific presenting symptoms. However, unlike other forms of dementia NPH can be treated surgically with an over 80% success rate on appropriately selected patients. Accurate assessment of the ventricles, in particular its sub-compartments, is required to diagnose the condition. Existing segmentation algorithms fail to accurately identify the ventricles in patients with such extreme pathology. We present an improvement to a whole brain segmentation approach that accurately identifies the ventricles and parcellates them into four sub-compartments. Our work is a combination of patch-based tissue segmentation and multi-atlas registration-based labeling. We include a validation on NPH patients, demonstrating superior performance against state-of-the-art methods.

Keywords

Brain MRI Enlarged ventricles Hydrocephalus 

Notes

Acknowledgments

This work was supported by the NIH/NINDS under grant R21-NS096497. Support was also provided by the National Multiple Sclerosis Society grant RG-1507-05243 and the Dept. of Defense Center for Neuroscience and Regenerative Medicine.

References

  1. 1.
    Adams, R.D., et al.: Symptomatic occult hydrocephalus with normal cerebrospinal-fluid pressure - a treatable syndrome. New Eng. J. Med. 273(3), 117–126 (1965)CrossRefGoogle Scholar
  2. 2.
    Avants, B.B., et al.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)CrossRefGoogle Scholar
  3. 3.
    Carass, A., et al.: A joint registration and segmentation approach to skull stripping. In: 4th International Symposium on Biomedical Imaging (ISBI 2007), pp. 656–659. IEEE (2007)Google Scholar
  4. 4.
    Carass, A., et al.: Simple paradigm for extra-cerebral tissue removal: algorithm and analysis. NeuroImage 56(4), 1982–1992 (2010)CrossRefGoogle Scholar
  5. 5.
    Coupe, P., et al.: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. NeuroImage 54, 940–954 (2011)CrossRefGoogle Scholar
  6. 6.
    Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)CrossRefGoogle Scholar
  7. 7.
    Ellingsen, L.M., et al.: Segmentation and labeling of the ventricular system in normal pressure hydrocephalus using patch-based tissue classification and multi-atlas labeling. In: Proceedings of SPIE Medical Imaging (SPIE-MI 2016), San Diego, CA, vol. 9784, p. 97840G–97840G-7, 27 February–3 March 2016 (2016)Google Scholar
  8. 8.
    Fischl, B.: FreeSurfer. NeuroImage 62(2), 774–781 (2012)CrossRefGoogle Scholar
  9. 9.
    Ledig, C., et al.: Robust whole-brain segmentation: application to traumatic brain injury. Med. Image Anal. 21, 40–58 (2015)CrossRefGoogle Scholar
  10. 10.
    Poca, M.A., et al.: Is the placement of shunts in patients with idiopathic normal pressure hydrocephalus worth the risk? Results of a study based on continuous monitoring of intracranial pressure. J. Neurosurg. 100(5), 855–866 (2004)CrossRefGoogle Scholar
  11. 11.
    Roy, S., Carass, A., Prince, J.L., Pham, D.L.: Subject specific sparse dictionary learning for atlas based brain MRI segmentation. In: Wu, G., Zhang, D., Zhou, L. (eds.) MLMI 2014. LNCS, vol. 8679, pp. 248–255. Springer, Cham (2014). doi: 10.1007/978-3-319-10581-9_31 Google Scholar
  12. 12.
    Roy, S., et al.: Subject-specific sparse dictionary learning for atlas-based brain MRI segmentation. IEEE J. Biomed. Health Inform. 19(5), 1598–1609 (2015)CrossRefGoogle Scholar
  13. 13.
    Shiee, N., Bazin, P.-L., Cuzzocreo, J.L., Blitz, A., Pham, D.L.: Segmentation of brain images using adaptive atlases with application to ventriculomegaly. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 1–12. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22092-0_1 CrossRefGoogle Scholar
  14. 14.
    Toma, A.K., et al.: Systematic review of the outcome of shunt surgery in idiopathic normal-pressure hydrocephalus. Acta Neurochir. 155, 1977–1980 (2013)CrossRefGoogle Scholar
  15. 15.
    Van Leemput, K., et al.: Automated model-based tissue classification of MR images of the brain. IEEE Trans. Med. Imaging 18, 897–908 (1999)CrossRefGoogle Scholar
  16. 16.
    Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bull. 1(6), 80–83 (1945)CrossRefGoogle Scholar
  17. 17.
    Zhang, J.: The mean field theory in EM procedures for Markov random fields. IEEE Trans. Signal Process. 40, 2570–2583 (1992)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Aaron Carass
    • 1
    • 2
  • Muhan Shao
    • 1
  • Xiang Li
    • 1
  • Blake E. Dewey
    • 1
  • Ari M. Blitz
    • 3
  • Snehashis Roy
    • 4
  • Dzung L. Pham
    • 4
  • Jerry L. Prince
    • 1
    • 2
  • Lotta M. Ellingsen
    • 1
    • 5
  1. 1.Department of Electrical and Computer EngineeringThe Johns Hopkins UniversityBaltimoreUSA
  2. 2.Department of Computer ScienceThe Johns Hopkins UniversityBaltimoreUSA
  3. 3.Department of Radiology and Radiological ScienceThe Johns Hopkins UniversityBaltimoreUSA
  4. 4.CNRMThe Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaUSA
  5. 5.Department of Electrical and Computer EngineeringUniversity of IcelandReykjavikIceland

Personalised recommendations