Advertisement

The Psychophysiology of Flow: A Systematic Review of Peripheral Nervous System Features

  • Michael T. Knierim
  • Raphael Rissler
  • Verena Dorner
  • Alexander Maedche
  • Christof Weinhardt
Conference paper
Part of the Lecture Notes in Information Systems and Organisation book series (LNISO, volume 25)

Abstract

As information systems (IS) are increasingly able to induce highly engaging and interactive experiences, the phenomenon of flow is considered a promising vehicle to understand IS user behavior and to ultimately inform the design of flow-fostering IS. However, despite growing interest of researchers in the phenomenon, knowledge about how to continuously assess flow during IS usage is limited. Hereby, recent developments in NeuroIS and psychophysiology propose novel possibilities to overcome this limitation. This article presents the results of a systematic literature review (SLR) on peripheral nervous system indicators of flow. The findings revealed that currently four major approaches exist towards physiological measurement. Propositions for simple and unobtrusive measurement in IS research are derived in conclusion.

Keywords

Flow theory Psychophysiology Systematic review NeuroIS 

References

  1. 1.
    Agarwal, R., Karahanna, E.: Time flies when you’re having fun: cognitive absorption and beliefs about information technology usage. Manag. Inf. Syst. Q. 24, 665–694 (2000)CrossRefGoogle Scholar
  2. 2.
    Csikszentmihalyi, M.: Beyond Boredom and Anxiety. Jossey-Bass, San Francisco, CA (1975)Google Scholar
  3. 3.
    Webster, J., Trevino, L.K., Ryan, L.: The dimensionality and correlates of flow in human–computer interactions. Comput. Human Behav. 9, 411–426 (1993)CrossRefGoogle Scholar
  4. 4.
    Ghani, J.A., Supnick, R., Rooney, P.: The experience of flow in computer-mediated and in face-to-face groups. In: Proceedings of the 12th International Conference on Information Systems, pp. 229–237 (1991)Google Scholar
  5. 5.
    Mahnke, R., Benlian, A., Hess, T.: Flow experience in information systems research: revisiting its conceptualization, conditions, and effects. In: Proceedings of the 35th International Conference on Information Systems, pp. 1–22 (2014)Google Scholar
  6. 6.
    Rissler, R., Nadj, M., Adam, M.T.P.: Flow in information systems research: review, integrative theoretical framework, and future directions. In: International Conference on Wirtschaftsinformatik, pp. 1051–1065 (2017)Google Scholar
  7. 7.
    Jackson, S.A., Eklund, R.C.: Assessing flow in physical activity: the flow state scale-2 and dispositional flow scale-2. J. Sport Exerc. Psychol. 24, 133–150 (2002)CrossRefGoogle Scholar
  8. 8.
    Engeser, S., Rheinberg, F.: Flow, performance and moderators of challenge–skill balance. Motiv. Emot. 32, 158–172 (2008)CrossRefGoogle Scholar
  9. 9.
    Peifer, C.: Psychophysiological correlates of flow-experience. In: Engeser, S. (ed.) Advances in Flow Research, pp. 139–164. Springer Science, New York (2012)CrossRefGoogle Scholar
  10. 10.
    Riedl, R., Léger, P.-M.: Fundamentals of NeuroIS Information Systems and the Brain. Springer, Berlin Heidelberg (2016)CrossRefGoogle Scholar
  11. 11.
    Riedl, R., Davis, F.D., Hevner, A.R.: Towards a NeuroIS research methodology: intensifying the discussion on methods, tools, and measurement. J. Assoc. Inf. Syst. 15, i–xxxv (2014)Google Scholar
  12. 12.
    Bastarache-Roberge, M.-C., Léger, P.-M., Courtemanche, F., Sénécal, S., Frédette, M.: Measuring flow using psychophysiological data in a multiplayer gaming context. In: Davis, F.D. (ed.) Information Systems and Neuroscience, Lecture Notes in Information Systems and Organisation, pp. 187–191 (2015)Google Scholar
  13. 13.
    Labonté-Lemoyne, É., Léger, P.-M., Resseguier, B., Bastarache-Roberge, M.-C., Fredette, M., Sénécal, S., Courtemanche, F.: Are we in flow? neurophysiological correlates of flow states in a collaborative game. In: Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, pp. 1980–1988 (2016)Google Scholar
  14. 14.
    Adam, M.T.P., Gimpel, H., Maedche, A., Riedl, R.: Designing stress-sensitive adaptive enterprise systems: theoretical foundations and design blueprint. In: Gmunden Retreat on NeuroIS, pp. 1–22 (2014)Google Scholar
  15. 15.
    Afergan, D., Peck, E.M., Solovey, E.T., Jenkins, A., Hincks, S.W., Brown, E.T., Chang, R., Jacob, R.J.K.: Dynamic difficulty using brain metrics of workload. In: Proceedings of the 32nd annual ACM conference on Human factors in computing systems—CHI’14, pp. 3797–3806 (2014)Google Scholar
  16. 16.
    Liu, C., Agrawal, P., Sarkar, N., Chen, S.: Dynamic difficulty adjustment in computer games through real-time anxiety-based affective feedback. Int. J. Hum. Comput. Interact. 25, 506–529 (2009)CrossRefGoogle Scholar
  17. 17.
    Keller, J.: The flow experience revisited: the influence of skills-demands-compatibility on experiential and physiological indicators. In: Flow Experience, pp. 351–374. Springer International Publishing, Cham (2016)Google Scholar
  18. 18.
    Harmat, L., de Manzano, Ö., Theorell, T., Högman, L., Fischer, H., Ullén, F.: Physiological correlates of the flow experience during computer game playing. Int. J. Psychophysiol. 97, 1–7 (2015)CrossRefGoogle Scholar
  19. 19.
    De Manzano, O., Theorell, T., Harmat, L., Ullén, F.: The psychophysiology of flow during piano playing. Emotion 10, 301–311 (2010)CrossRefGoogle Scholar
  20. 20.
    Ullén, F., De Manzano, Ö., Theorell, T., Harmat, L.: The physiology of effortless attention: correlates of state flow and flow proneness. In: Bruya, B. (ed.) Effortless Attention: A New Perspective in the Cognitive Science of Attention and Action, pp. 205–217. MIT Press, Cambridge (2010)CrossRefGoogle Scholar
  21. 21.
    Léger, P.M., Davis, F.D., Cronan, T.P., Perret, J.: Neurophysiological correlates of cognitive absorption in an enactive training context. Comput. Human Behav. 34, 273–283 (2014)CrossRefGoogle Scholar
  22. 22.
    Kitchenham, B., Charters, S.: Guidelines for performing systematic literature reviews in software engineering. Tech. Rep. EBSE. (2007)Google Scholar
  23. 23.
    Webster, J., Watson, R.T.: Analyzing the past to prepare for the future: writing a literature review. Manag. Inf. Syst. Q. 26, xiii–xxiii (2002)Google Scholar
  24. 24.
    Bandara, W., Furtmueller, E., Gorbacheva, E., Miskon, S., Beekhuyzen, J.: Achieving rigor in literature reviews: insights from qualitative data analysis and tool-support. Commun. Assoc. Inf. Syst. 37, 154–204 (2015)Google Scholar
  25. 25.
    Hamari, J., Koivisto, J., Sarsa, H.: Does gamification work?—a literature review of empirical studies on gamification. In: Proceedings of the Annual Hawaii International Conference on System Sciences, pp. 3025–3034 (2014)Google Scholar
  26. 26.
    Mauri, M., Cipresso, P., Balgera, A., Villamira, M., Riva, G.: Why is facebook so successful? psychophysiological measures describe a core flow state while using facebook. Cyberpsychology, Behav. Soc. Netw. 14, 723–731 (2011)CrossRefGoogle Scholar
  27. 27.
    Tozman, T., Magdas, E.S., MacDougall, H.G., Vollmeyer, R.: Understanding the psychophysiology of flow: a driving simulator experiment to investigate the relationship between flow and heart rate variability. Comput. Human Behav. 52, 408–418 (2015)CrossRefGoogle Scholar
  28. 28.
    Kivikangas, J.M., Puttonen, S.: Psychophysiology of flow experience: an explorative study (2006)Google Scholar
  29. 29.
    Nacke, L.E., Lindley, C.A.: Flow and Immersion in first-person shooters: measuring the player’s gameplay experience. In: Proceedings of the 2008 Conference on Future Play: Research, Play, Share, pp. 81–88. ACM Press, New York (2008)Google Scholar
  30. 30.
    Ulrich, M., Keller, J., Grön, G.: Neural signatures of experimentally induced flow experiences identified in a typical fMRI block design with BOLD imaging. Soc. Cogn. Affect. Neurosci. 11, 496–507 (2016)CrossRefGoogle Scholar
  31. 31.
    Peifer, C., Schulz, A., Schächinger, H., Baumann, N., Antoni, C.H.: The relation of flow-experience and physiological arousal under stress—Can u shape it? J. Exp. Soc. Psychol. 53, 62–69 (2014)CrossRefGoogle Scholar
  32. 32.
    Tozman, T., Peifer, C.: Experimental paradigms to investigate flow-experience and its psychophysiology: inspired from stress theory and research. In: Harmat, L., Orsted, F., Ullén, F., Wright, J., and Sadlo, G. (eds.) Flow Experience, pp. 329–350. Springer, Heidelberg (2016)Google Scholar
  33. 33.
    Tozman, T., Zhang, Y.Y., Vollmeyer, R.: Inverted U-shaped function between flow and cortisol release during chess play. J. Happiness Stud. 18, 247–268 (2017)CrossRefGoogle Scholar
  34. 34.
    Berntson, G.G., Quigley, K.S., Lozano, D.: Cardiovascular psychophysiology. In: Cacioppo, J.T., Tassinary, L.G., Berntson, G.G. (eds.) Handbook of Psychophysiology, pp. 182–210. Cambridge University Press, Cambridge (2007)CrossRefGoogle Scholar
  35. 35.
    Porges, S.W.: Orienting in a defensive world: mammalian modifications of our evolutionary heritage. A polyvagal theory (1995)Google Scholar
  36. 36.
    Boucsein, W.: Electrodermal Activity. Springer Science+ Business Media, New York, Dordrecht, Heidelberg, London (2012)CrossRefGoogle Scholar
  37. 37.
    Bian, Y., Yang, C., Gao, F., Li, H., Zhou, S., Li, H., Sun, X., Meng, X.: A framework for physiological indicators of flow in VR games: construction and preliminary evaluation. Pers. Ubiquitous Comput. 20, 821–832 (2016)CrossRefGoogle Scholar
  38. 38.
    Addas, S., Pinsonneault, A.: The many faces of information technology interruptions: a taxonomy and preliminary investigation of their performance effects. Inf. Syst. J. 25, 231–273 (2015)CrossRefGoogle Scholar
  39. 39.
    Parent-Thirion, A., Vermeylen, G., van Houten, G., Wilkens, M., Wilczynska, A.: Sixth European working conditions survey (EWCS). Office for Official Publications of the European Communities, Luxembourg, LU (2015)Google Scholar
  40. 40.
    Lehrer, P.M., Gevirtz, R.: Heart rate variability biofeedback: how and why does it work? Front. Psychol. 5, 1–9 (2014)CrossRefGoogle Scholar
  41. 41.
    Walker, C.J.: Experiencing flow: is doing it together better than doing it alone? J. Posit. Psychol. 5, 3–11 (2010)CrossRefGoogle Scholar
  42. 42.
    Keith, M., Anderson, G., Dean, D., Gaskin, J., Wiser, T., Gremmert, S., Payne, K.: The effects of video gaming on work group performance. In: Proceedings of the 37th International Conference on Information Systems, pp. 1–20 (2016)Google Scholar
  43. 43.
    Noy, L., Levit-Binun, N., Golland, Y.: Being in the zone: physiological markers of togetherness in joint improvisation. Front. Hum. Neurosci. 9, 1–14 (2015)CrossRefGoogle Scholar
  44. 44.
    Murch, W.S., Chu, S.W.M., Clark, L.: Measuring the slot machine zone with attentional dual tasks and respiratory sinus arrhythmia. Psychol. Addict. Behav. 1–11 (2017)Google Scholar
  45. 45.
    Peifer, C., Schächtinger, H., Engeser, S., Antoni, C.H.: Cortisol effects on flow-experience. Psychopharmacology 232, 1165–1173 (2015)CrossRefGoogle Scholar
  46. 46.
    Gaggioli, A., Cipresso, P., Serino, S., Riva, G.: Psychophysiological correlates of flow during daily activities. In: Wiederhold, B.K. and Riva, G. (eds.) Annual Review of Cybertherapy and Telemedicine 2013, pp. 65–69. IOS Press (2013)Google Scholar
  47. 47.
    Keller, J., Bless, H., Blomann, F., Kleinböhl, D.: Physiological aspects of flow experiences: skills-demand-compatibility effects on heart rate variability and salivary cortisol. J. Exp. Soc. Psychol. 47, 849–852 (2011)CrossRefGoogle Scholar
  48. 48.
    Nacke, L.E., Grimshaw, M.N., Lindley, C.A.: More than a feeling: measurement of sonic user experience and psychophysiology in a first-person shooter game. Interact. Comput. 22, 336–343 (2010)CrossRefGoogle Scholar
  49. 49.
    Drachen, A., Pedersen, A.L.: Correlation between heart rate, electrodermal activity and player experience in first-person shooter games. In: Proceedings of the 5th ACM SIGGRAPH Symposium on Video Games, pp. 49–54 (2009)Google Scholar
  50. 50.
    Drachen, A., Nacke, L.E., Yannakakis, G., Pedersen, A.L.: Psychophysiological correlations with gameplay experience dimensions. In: Brain, Body and Bytes, Workshop—CHI 2010, pp. 1–4 (2010)Google Scholar
  51. 51.
    Nacke, L.E., Lindley, C.: Affective ludology, Flow and immersion in a first-person shooter: measurement of player experience. Loading 3, 1–21 (2010)Google Scholar
  52. 52.
    Klarkowski, M., Johnson, D., Wyeth, P., Phillips, C., Smith, S.: Psychophysiology of challenge in play: EDA and self-reported arousal. In: Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems, pp. 1930–1936. ACM Press, New York (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Michael T. Knierim
    • 1
  • Raphael Rissler
    • 1
    • 2
  • Verena Dorner
    • 1
  • Alexander Maedche
    • 1
  • Christof Weinhardt
    • 1
  1. 1.Karlsruhe Institute of Technology (KIT), Institute of Information Systems and Marketing (IISM)KarlsruheGermany
  2. 2.SAP SEWalldorfGermany

Personalised recommendations