Advertisement

Listing Maximal Independent Sets with Minimal Space and Bounded Delay

  • Alessio Conte
  • Roberto Grossi
  • Andrea Marino
  • Takeaki Uno
  • Luca Versari
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10508)

Abstract

An independent set is a set of nodes in a graph such that no two of them are adjacent. It is maximal if there is no node outside the independent set that may join it. Listing maximal independent sets in graphs can be applied, for example, to sample nodes belonging to different communities or clusters in network analysis and document clustering. The problem has a rich history as it is related to maximal cliques, dominance sets, vertex covers and 3-colorings in graphs. We are interested in reducing the delay, which is the worst-case time between any two consecutively output solutions, and the memory footprint, which is the additional working space behind the read-only input graph.

References

  1. 1.
    Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Appl. Math. 65(1–3), 21–46 (1996)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Basagni, S.: Finding a maximal weighted independent set in wireless networks. Telecommun. Syst. 18(1), 155–168 (2001)CrossRefMATHGoogle Scholar
  3. 3.
    Brendel, W., Todorovic, S.: Segmentation as maximum-weight independent set. In: Advances in Neural Information Processing Systems, pp. 307–315 (2010)Google Scholar
  4. 4.
    Bron, C., Kerbosch, J.: Finding all cliques of an undirected graph (algorithm 457). Commun. ACM 16(9), 575–576 (1973)CrossRefMATHGoogle Scholar
  5. 5.
    Chang, L., Yu, J.X., Qin, L.: Fast maximal cliques enumeration in sparse graphs. Algorithmica 66(1), 173–186 (2013)Google Scholar
  6. 6.
    Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J. Comput. 14(1), 210–223 (1985)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Cohen, S., Kimelfeld, B., Sagiv, Y.: Generating all maximal induced subgraphs for hereditary and connected-hereditary graph properties. JCSS 74(7), 1147–1159 (2008)Google Scholar
  8. 8.
    Comin, C., Rizzi, R.: An improved upper bound on maximal clique listing via rectangular fast matrix multiplication. CoRR, abs/1506.01082 (2015)Google Scholar
  9. 9.
    Conte, A., Grossi, R., Marino, A., Versari, L.: Sublinear-space bounded-delay enumeration for massive network analytics: maximal cliques. In: ICALP, vol. 148, pp. 1–15 (2016)Google Scholar
  10. 10.
    Eppstein, D., Löffler, M., Strash, D.: Listing all maximal cliques in large sparse real-world graphs. ACM J. Exp. Algorithmics 18 (2013). Article No. 3.1Google Scholar
  11. 11.
    Eppstein, D., Strash, D.: Listing all maximal cliques in large sparse real-world graphs. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 364–375. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-20662-7_31 CrossRefGoogle Scholar
  12. 12.
    Fu, A.W.-C., Wu, H., Cheng, J., Wong, R.C.-W.: IS-LABEL: an independent-set based labeling scheme for point-to-point distance querying. Proc. VLDB Endow. 6(6), 457–468 (2013)CrossRefGoogle Scholar
  13. 13.
    Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal independent sets. Inf. Proc. Lett. 27(3), 119–123 (1988)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Leung, J.Y.-T.: Fast algorithms for generating all maximal independent sets of interval, circular-arc and chordal graphs. J. Algorithms 5(1), 22–35 (1984)Google Scholar
  15. 15.
    Li, N., Latecki, L.J.: Clustering aggregation as maximum-weight independent set. In: Advances in Neural Information Processing Systems, pp. 782–790 (2012)Google Scholar
  16. 16.
    Loukakis, E., Tsouros, C.: A depth first search algorithm to generate the family of maximal independent sets of a graph lexicographically. Computing 27(4), 349–366 (1981)Google Scholar
  17. 17.
    Makino, K., Uno, T.: New algorithms for enumerating all maximal cliques. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 260–272. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-27810-8_23 CrossRefGoogle Scholar
  18. 18.
    Minty, G.J.: On maximal independent sets of vertices in claw-free graphs. J. Comb. Theor. Ser. B 28(3), 284–304 (1980)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Okamoto, Y., Uno, T., Uehara, R.: Linear-time counting algorithms for independent sets in chordal graphs. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 433–444. Springer, Heidelberg (2005). doi: 10.1007/11604686_38 CrossRefGoogle Scholar
  20. 20.
    Okamoto, Y., Uno, T., Uehara, R.: Counting the number of independent sets in chordal graphs. J. Discrete Algorithms 6(2), 229–242 (2008)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Olteanu, A., Castillo, C., Diaz, F., Vieweg, S.: CrisisLex: a lexicon for collecting and filtering microblogged communications in crises. In: ICWSM (2014)Google Scholar
  22. 22.
    Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time complexity for generating all maximal cliques and computational experiments. TCS 363(1), 28–42 (2006)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating all the maximal independent sets. SIAM J. Comput. 6(3), 505–517 (1977)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Uno, T.: Two general methods to reduce delay and change of enumeration algorithms. National Institute of Informatics (in Japan) (2003). TR E, 4Google Scholar
  25. 25.
    Yu, C.-W., Chen, G.H.: Generate all maximal independent sets in permutation graphs. Int. J. Comput. Math. 47(1–2), 1–8 (1993)CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alessio Conte
    • 1
  • Roberto Grossi
    • 1
  • Andrea Marino
    • 1
  • Takeaki Uno
    • 2
  • Luca Versari
    • 3
  1. 1.Università di PisaPisaItaly
  2. 2.National Institute of InformaticsTokyoJapan
  3. 3.Scuola Normale SuperiorePisaItaly

Personalised recommendations