Advertisement

A Fuzzy Colour Model Sensitive to the Context: Study Cases Using PRAGR and Logics

  • Zoe Falomir
  • Luis Gonzalez-Abril
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10571)

Abstract

A fuzzy colour model is defined to deal with human-machine communication situations where perceptual and conceptual deviations can appear. Logics have been defined to combine this model with the Probabilistic Reference And GRounding mechanism (PRAGR) (Mast and Wolter 2013) in order to obtain the most acceptable and appropriate colour descriptor depending on the situation. Two case studies are presented and promising results are obtained.

Notes

Acknowledgements

This work was funded by the project Cognitive Qualitative Descriptions and Applications (CogQDA) at Universität Bremen. This research is partially supported by the projects of the Spanish Ministry of Economy and Competitiveness HERMES (TIN2013-46801-C4-1-R) and Simon (TIC-8052) of the Andalusian Regional Ministry of Economy, Innovation and Science. The authors also thank Vivien Mast for the use cases appearing in this paper.

References

  1. Falomir, Z.: Qualitative descriptors applied to ambient intelligent systems. J. Ambient Intell. Smart Environ. (JAISE) 9(1), 21–39 (2017). doi: 10.3233/AIS-160418 CrossRefGoogle Scholar
  2. Falomir, Z., Museros, L., Gonzalez-Abril, L.: A model for colour naming and comparing based on conceptual neighbourhood. An application for comparing art compositions. Knowl. Based Syst. 81, 1–21 (2015). doi: 10.1016/j.knosys.2014.12.013 CrossRefGoogle Scholar
  3. Falomir, Z., Olteţeanu, A.-M.: Logics based on qualitative descriptors for scene understanding. Neurocomputing 161, 3–16 (2015). doi: 10.1016/j.neucom.2015.01.074 CrossRefGoogle Scholar
  4. Helson, H.: Fundamental problems in color vision. i. the principle governing changes in hue, saturation, and lightness of non-selective samples in chromatic illumination. J. Exp. Psychol. 23(5), 439–476 (1938)CrossRefGoogle Scholar
  5. Lotto, R., Purves, D.: The effects of color on brightness. Nat. Neurosci. 2(11), 1010–1014 (1999)CrossRefGoogle Scholar
  6. Mast, V., Falomir, Z., Wolter, D.: Probabilistic reference and grounding with PRAGR for dialogues with robots. J. Exp. Theor. Artif. Intell. 28(5), 889–911 (2016). doi: 10.1080/0952813X.2016.1154611 CrossRefGoogle Scholar
  7. Mast, V., Wolter, D.: A probabilistic framework for object descriptions in indoor route instructions. In: Tenbrink, T., Stell, J., Galton, A., Wood, Z. (eds.) COSIT 2013. LNCS, vol. 8116, pp. 185–204. Springer, Cham (2013). doi: 10.1007/978-3-319-01790-7_11 CrossRefGoogle Scholar
  8. Menegaz, G., Troter, A.L., Sequeira, J., Boi, J.M.: A discrete model for color naming. EURASIP J. Appl. Signal Process 2007(1), 1–10 (2007). Special Issue on Image PerceptionGoogle Scholar
  9. Meo, T., McMahan, B., Stone, M.: Generating and resolving vague color references. In: Rieser, V., Muller, P. (eds.) Proceedings of SemDial 2014/DialWatt, pp. 107–115 (2014)Google Scholar
  10. Palmer, S.E., Schloss, K.B.: An ecological valence theory of human color preference. Proc. Natl. Acad. Sci. 107(19), 8877–8882 (2010)CrossRefGoogle Scholar
  11. Seaborn, M., Hepplewhite, L., Stonham, T.J.: Fuzzy colour category map for the measurement of colour similarity and dissimilarity. Pattern Recogn. 38(2), 165–177 (2005)CrossRefzbMATHGoogle Scholar
  12. Soto-Hidalgo, J.M., Chamorro-Martinez, J., Sanchez, D.: A new approach for defining a fuzzy color space. In: 2010 IEEE International Conference on Fuzzy Systems (FUZZ), pp. 1–6 (2010)Google Scholar
  13. Spranger, M., Pauw, S.: Dealing with perceptual deviation - vague semantics for spatial language and quantification. In: Steels, L., Hild, M. (eds.) Language Grounding in Robots, pp. 173–192. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theor. Pract. Logic Program. (TPLP) 12(1–2), 67–96 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  15. Zadeh, L.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of BremenBremenGermany
  2. 2.Universidad de SevillaSevillaSpain

Personalised recommendations