Advertisement

Machine Learning for Large-Scale Quality Control of 3D Shape Models in Neuroimaging

  • Dmitry Petrov
  • Boris A. GutmanEmail author
  • Shih-Hua (Julie) Yu
  • Kathryn Alpert
  • Artemis Zavaliangos-Petropulu
  • Dmitry Isaev
  • Jessica A. Turner
  • Theo G. M. van Erp
  • Lei Wang
  • Lianne Schmaal
  • Dick Veltman
  • Paul M. Thompson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10541)

Abstract

As very large studies of complex neuroimaging phenotypes become more common, human quality assessment of MRI-derived data remains one of the last major bottlenecks. Few attempts have so far been made to address this issue with machine learning. In this work, we optimize predictive models of quality for meshes representing deep brain structure shapes. We use standard vertex-wise and global shape features computed homologously across 19 cohorts and over 7500 human-rated subjects, training kernelized Support Vector Machine and Gradient Boosted Decision Trees classifiers to detect meshes of failing quality. Our models generalize across datasets and diseases, reducing human workload by 30–70%, or equivalently hundreds of human rater hours for datasets of comparable size, with recall rates approaching inter-rater reliability.

Keywords

Shape analysis Machine learning Quality control 

References

  1. 1.
    Thompson, P.M., Andreassen, O.A., Arias-Vasquez, A., Bearden, C.E., Boedhoe, P.S., Brouwer, R.M., Buckner, R.L., Buitelaar, J.K., Bulaeva, K.B., Cannon, D.M.: Enigma and the individual: predicting factors that affect the brain in 35 countries worldwide. Neuroimage 145(Pt B), 389–408 (2015)Google Scholar
  2. 2.
    Fischl, B.: Freesurfer. Neuroimage 62(2), 774–781 (2012)CrossRefGoogle Scholar
  3. 3.
    Gutman, B., Ching, C., Andreassen, O., Schmaal, L., Veltman, D., Van Erp, T., Turner, J., Thompson, P.M., et al.: Harmonized large-scale anatomical shape analysis: mapping subcortical differences across the enigma bipolar, schizophrenia, and major depression working groups. Biol. Psychiatry 81(10), S308 (2017)CrossRefGoogle Scholar
  4. 4.
    Gutman, B.A., Jahanshad, N., Ching, C.R., Wang, Y., Kochunov, P.V., Nichols, T.E., Thompson, P.M.: Medial demons registration localizes the degree of genetic influence over subcortical shape variability: An n = 1480 meta-analysis. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 1402–1406. IEEE (2015)Google Scholar
  5. 5.
    Roshchupkin, G.V., Gutman, B.A., et al.: Heritability of the shape of subcortical brain structures in the general population. Nat. Commun. 7, 13738 (2016)CrossRefGoogle Scholar
  6. 6.
    Gutman, B.A., Madsen, S.K., Toga, A.W., Thompson, P.M.: A family of fast spherical registration algorithms for cortical shapes. In: Shen, L., Liu, T., Yap, P.-T., Huang, H., Shen, D., Westin, C.-F. (eds.) MBIA 2013. LNCS, vol. 8159, pp. 246–257. Springer, Cham (2013). doi: 10.1007/978-3-319-02126-3_24 CrossRefGoogle Scholar
  7. 7.
    Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016, pp. 785–794. ACM, New York (2016)Google Scholar
  9. 9.
    Pedregosa, F., Varoquaux, G., Gramfort, A., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetzbMATHGoogle Scholar
  10. 10.
    van Erp, T.G.M., Hibar, D.P., et al.: Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the enigma consortium. Mol. Psychiatry 21, 547–553 (2015)CrossRefGoogle Scholar
  11. 11.
    Schmaal, L., Hibar, D.P., et al.: Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the enigma major depressive disorder working group. Mol. Psychiatry 22(6), 900–909 (2017)CrossRefGoogle Scholar
  12. 12.
    Esteban, O., Birman, D., Schaer, M., Koyejo, O.O., Poldrack, R.A., Gorgolewski, K.J.: Mriqc: predicting quality in manual MRI assessment protocols using no-reference image quality measures. bioRxiv (2017)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Dmitry Petrov
    • 1
    • 2
  • Boris A. Gutman
    • 1
    Email author
  • Shih-Hua (Julie) Yu
    • 1
  • Kathryn Alpert
    • 3
  • Artemis Zavaliangos-Petropulu
    • 1
  • Dmitry Isaev
    • 1
  • Jessica A. Turner
    • 4
  • Theo G. M. van Erp
    • 5
  • Lei Wang
    • 3
  • Lianne Schmaal
    • 6
    • 7
  • Dick Veltman
    • 7
  • Paul M. Thompson
    • 1
  1. 1.Imaging Genetics Center, Stevens Institute for Neuroimaging and InformaticsUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.The Institute for Information Transmission ProblemsMoscowRussia
  3. 3.Department of PsychiatryNorthwestern UniversityChicagoUSA
  4. 4.The Mind Research NetworkAlbuquerqueUSA
  5. 5.University of CaliforniaIrvineUSA
  6. 6.Orygen, The National Centre of Excellence in Youth Mental HealthMelbourneAustralia
  7. 7.Department of PsychiatryVU University Medical CenterAmsterdamThe Netherlands

Personalised recommendations