Advertisement

Quantitative Live Cell FLIM Imaging in Three Dimensions

  • Alix Le Marois
  • Klaus SuhlingEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1035)

Abstract

In this chapter, the concept of fluorescence lifetime and its utility in quantitative live cell imaging will be introduced, along with methods to record and analyze FLIM data. Relevant applications in 3D tissue and live cell imaging, including multiplexed FLIM detection, will also be detailed.

Keywords

FLIM techniques Time-correlated single photon counting (TCSPC) Multi-channel FLIM Multi-modal FLIM Optical sectioning FLIM data analysis 

References

  1. 1.
    Lakowicz JR (2006) Principles of Fluorescence Spectroscopy. 3rd edition, Springer US, Boston, MA.Google Scholar
  2. 2.
    Suhling K et al (2015) Fluorescence lifetime imaging (FLIM): Basic concepts and some recent developments. Med Photonics 27:3–40CrossRefGoogle Scholar
  3. 3.
    Stringari C, Cinquin A, Cinquin O, Digman MA, Donovan PJ, Gratton E (2011) Phasor approach to fluorescence lifetime microscopy distinguishes different metabolic states of germ cells in a live tissue. Proc Natl Acad Sci U S A 108(33):13582–13587PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Skala MC et al (2007) In vivo multiphoton fluorescence lifetime imaging of protein-bound and free NADH in normal and pre-cancerous epithelia. J Biomed Opt 12(2):024014PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Appel AA, Anastasio MA, Larson JC, Brey EM (2013) Imaging challenges in biomaterials and tissue engineering. Biomaterials 34(28):6615–6630PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Elson D et al (2004) Time-domain fluorescence lifetime imaging applied to biological tissue. Off J Eur Photochem Assoc Eur Soc Photobiol 3(8):795–801CrossRefGoogle Scholar
  7. 7.
    Gratton E, Breusegem S, Sutin J, Ruan Q, Barry N (2003) Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods. J Biomed Opt 8(3):381–390PubMedCrossRefGoogle Scholar
  8. 8.
    Hedstrom J, Sedarous S, Prendergast FG (1988) Measurements of fluorescence lifetimes by use of a hybrid time-correlated and multifrequency phase fluorometer. Biochemistry 27(17):6203–6208PubMedCrossRefGoogle Scholar
  9. 9.
    Valeur B (2005) Pulse and phase fluorometries: an objective comparison. In: Hof PM, Hutterer PR, Fidler PV (eds) Fluorescence spectroscopy in biology. Springer, Berlin Heidelberg, pp 30–48CrossRefGoogle Scholar
  10. 10.
    Becker W (2012) The bh TCSPC handbook, 5th edn. Becker and Hickl GmbH, BerlinGoogle Scholar
  11. 11.
    Becker W (2005) Advanced time-correlated single photon counting techniques, vol 81. Springer, Berlin, HeidelbergGoogle Scholar
  12. 12.
    Masters, BR (2006) Confocal microscopy and multiphoton excitation microscopy. The genesis of live cell imaging–chapter 7. SPIE Press, BellinghamGoogle Scholar
  13. 13.
    Okkelman IA, Dmitriev RI, Foley T, Papkovsky DB (2016) Use of fluorescence lifetime imaging microscopy (FLIM) as a timer of cell cycle S phase. PLoS One 11(12):e0167385PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    So PTC, Dong CY, Masters BR, Berland KM (2000) Two-photon excitation fluorescence microscopy. Annu Rev Biomed Eng 2(1):399–429PubMedCrossRefGoogle Scholar
  15. 15.
    Hoover EE, Squier JA (2013) Advances in multiphoton microscopy technology. Nat Photonics 7(2):93–101PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Quentmeier S, Denicke S, Gericke K-H (2009) Two-color two-photon fluorescence laser scanning microscopy. J Fluoresc 19(6):1037–1043PubMedCrossRefGoogle Scholar
  17. 17.
    Valeur B, Berberan-Santos MN (2012) Molecular fluorescence: principles and applications. John Wiley & Sons, Hoboken, NJCrossRefGoogle Scholar
  18. 18.
    Grzybowski A, Pietrzak K (2013) Maria Goeppert-Mayer (1906–1972): two-photon effect on dermatology. Clin Dermatol 31(2):221–225PubMedCrossRefGoogle Scholar
  19. 19.
    Lakner PH, Monaghan MG, Möller Y, Olayioye MA, Schenke-Layland K (2017) Applying phasor approach analysis of multiphoton FLIM measurements to probe the metabolic activity of three-dimensional in vitro cell culture models. Sci Rep 7:42730PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    König K, Uchugonova A, Gorjup E (2011) Multiphoton fluorescence lifetime imaging of 3D-stem cell spheroids during differentiation. Microsc Res Tech 74(1):9–17PubMedCrossRefGoogle Scholar
  21. 21.
    Skala MC et al (2005) Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues. Cancer Res 65(4):1180–1186PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Blacker TS et al (2014) Separating NADH and NADPH fluorescence in live cells and tissues using FLIM. Nat Commun 5:3936PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Hirvonen LM, Suhling K (2017) Wide-field TCSPC: methods and applications. Meas Sci Technol 28(1):012003CrossRefGoogle Scholar
  24. 24.
    Suhling K et al (2016) Wide-field TCSPC-based fluorescence lifetime imaging (FLIM) microscopy. SPIE Proc 9858:98580JCrossRefGoogle Scholar
  25. 25.
    Hirvonen LM et al (2016) Picosecond wide-field time-correlated single photon counting fluorescence microscopy with a delay line anode detector. Appl Phys Lett 109(7):071101CrossRefGoogle Scholar
  26. 26.
    Sytsma J, Vroom JM, De Grauw CJ, Gerritsen HC (1998) Time-gated fluorescence lifetime imaging and microvolume spectroscopy using two-photon excitation. J Microsc 191(1):39–51Google Scholar
  27. 27.
    Soloviev VY et al (2007) Fluorescence lifetime imaging by using time-gated data acquisition. Appl Opt 46(30):7384–7391PubMedCrossRefGoogle Scholar
  28. 28.
    Cole MJ et al (2001) Time-domain whole-field fluorescence lifetime imaging with optical sectioning. J Microsc 203(3):246–257PubMedCrossRefGoogle Scholar
  29. 29.
    Hinsdale T, Olsovsky C, Rico-Jimenez JJ, Maitland KC, Jo JA, Malik BH (2017) Optically sectioned wide-field fluorescence lifetime imaging microscopy enabled by structured illumination. Biomed Opt Express 8(3):1455–1465PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Webb SED et al (2002) A wide-field time-domain fluorescence lifetime imaging microscope with optical sectioning. Rev Sci Instrum 73:1898CrossRefGoogle Scholar
  31. 31.
    Grant DM et al (2007) High speed optically sectioned fluorescence lifetime imaging permits study of live cell signaling events. Opt Express 15(24):15656–15673Google Scholar
  32. 32.
    Grant DM, Elson DS, Schimpf D, Dunsby C, Requejo-Isidro J, Auksorius E, Munro I, Neil MAA, French PMW, Nye E, Stamp G, Courtney P, 2005 Optically sectioned fluores-cence lifetime imaging using a Nipkow disk microscope and atunable ultrafast continuum excitation source. Opt Lett 30:3353—3355Google Scholar
  33. 33.
    Beule PD et al (2007) Rapid hyperspectral fluorescence lifetime imaging. Microsc Res Tech 70(5):481–484PubMedCrossRefGoogle Scholar
  34. 34.
    Popleteeva M et al (2015) Fast and simple spectral FLIM for biochemical and medical imaging. Opt Express 23(18):23511–23525PubMedCrossRefGoogle Scholar
  35. 35.
    Esposito A, Gerritsen HC, Wouters FS (2007) Optimizing frequency-domain fluorescence lifetime sensing for high-throughput applications: photon economy and acquisition speed. J Opt Soc Am A 24(10):3261–3273Google Scholar
  36. 36.
    Verveer PJ, Hanley QS (2009) Frequency domain FLIM theory, instrumentation, and data analysis. Lab Tech Biochem Mol Biol 33:59–94CrossRefGoogle Scholar
  37. 37.
    Santi PA (2011) Light sheet fluorescence microscopy: a review. J Histochem Cytochem 59(2):129–138PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Stelzer EHK (2015) Light-sheet fluorescence microscopy for quantitative biology. Nat Methods 12(1):23–26PubMedCrossRefGoogle Scholar
  39. 39.
    Rieckher M (2017) Light sheet microscopy to measure protein dynamics. J Cell Physiol 232(1):27–35PubMedCrossRefGoogle Scholar
  40. 40.
    Greger K, Neetz MJ, Reynaud EG, Stelzer EHK (2011) Three-dimensional fluorescence lifetime imaging with a single plane illumination microscope provides an improved signal to noise ratio. Opt Express 19(21):20743–20750PubMedCrossRefGoogle Scholar
  41. 41.
    Mitchell CA et al (2017) Functional in vivo imaging using fluorescence lifetime light-sheet microscopy. Opt Lett 42(7):1269–1272PubMedCrossRefGoogle Scholar
  42. 42.
    Krstajić N, Levitt J, Poland S, Ameer-Beg S, Henderson R (2015) 256 × 2 SPAD line sensor for time resolved fluorescence spectroscopy. Opt Express 23(5):5653–5669PubMedCrossRefGoogle Scholar
  43. 43.
    Niehörster T et al (2016) Multi-target spectrally resolved fluorescence lifetime imaging microscopy. Nat Methods 13(3):257–262PubMedCrossRefGoogle Scholar
  44. 44.
    Owen DM et al (2007) Excitation-resolved hyperspectral fluorescence lifetime imaging using a UV-extended supercontinuum source. Opt Lett 32(23):3408–3410PubMedCrossRefGoogle Scholar
  45. 45.
    Hanley QS, Arndt-Jovin DJ, Jovin TM (2002) Spectrallyresolved fluorescence lifetime imaging microscopy. Appl. Spectrosc 56:155–166.Google Scholar
  46. 46.
    Vitali M et al (2011) Wide-field multi-parameter FLIM: long-term minimal invasive observation of proteins in living cells. PLoS One 6(2):e15820PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Phipps JE, Sun Y, Fishbein MC, Marcu L (2012) A fluorescence lifetime imaging classification method to investigate the collagen to lipid ratio in fibrous caps of atherosclerotic plaque. Lasers Surg Med 44(7):564–571PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Phipps J, Sun Y, Saroufeem R, Hatami N, Fishbein MC, Marcu L (2011) Fluorescence lifetime imaging for the characterization of the biochemical composition of atherosclerotic plaques. J Biomed Opt 16(9):096018PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Laviv T, Kim BB, Chu J, Lam AJ, Lin MZ, Yasuda R (2016) Simultaneous dual-color fluorescence lifetime imaging with novel red-shifted fluorescent proteins. Nat Methods 13(12):989–992Google Scholar
  50. 50.
    Zhao M, Wan X, Li Y, Zhou W, Peng L (2015) Multiplexed 3D FRET imaging in deep tissue of live embryos. Sci Rep 5:13991PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Xu C, Zipfel W, Shear JB, Williams RM, Webb WW (1996) Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy. Proc Natl Acad Sci U S A 93(20):10763–10768PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Bestvater F et al (2002) Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging. J Microsc 208(Pt 2):108–115PubMedCrossRefGoogle Scholar
  53. 53.
    Periasamy A, Clegg RM (2009) FLIM microscopy in biology and medicine. CRC Press, Boca Raton, FLCrossRefGoogle Scholar
  54. 54.
    Levitt JA et al (2015) Simultaneous FRAP, FLIM and FAIM for measurements of protein mobility and interaction in living cells. Biomed Opt Express 6(10):3842–3854PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Suhling K, Levitt J, Chung P-H (2014) Time-resolved fluorescence anisotropy imaging. In: Engelborghs Y, Visser AJWG (eds) Fluorescence spectroscopy and microscopy, vol 1076. Humana Press, Totowa, NJ, pp 503–519CrossRefGoogle Scholar
  56. 56.
    Siegel J et al (2003) Wide-field time-resolved fluorescence anisotropy imaging (TR-FAIM): imaging the rotational mobility of a fluorophore. Rev Sci Instrum 74(1):182–192CrossRefGoogle Scholar
  57. 57.
    Suhling K et al (2004) Time-resolved fluorescence anisotropy imaging applied to live cells. Opt Lett 29(6):584PubMedCrossRefGoogle Scholar
  58. 58.
    Devauges V et al (2012) Homodimerization of amyloid precursor protein at the plasma membrane: a homoFRET study by time-resolved fluorescence anisotropy imaging. PLoS One 7(9):e44434PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Bader AN, Hofman EG, Voortman J, en Henegouwen PM, Gerritsen HC (2009) Homo-FRET imaging enables quantification of protein cluster sizes with subcellular resolution. Biophys J 97(9):2613–2622PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Bader AN, Hofman EG, en Henegouwen PM, Gerritsen HC (2007) Imaging of protein cluster sizes by means of confocal time-gated fluorescence anisotropy microscopy. Opt Express 15(11):6934–6945PubMedCrossRefGoogle Scholar
  61. 61.
    Clayton AHA, Hanley QS, Arndt-Jovin DJ, Subramaniam V, Jovin TM (2002) Dynamic fluorescence anisotropy imaging microscopy inthe frequency domain (rFLIM). Biophys J 83(3):1631–1649PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Lidke DS et al (2003) Imaging molecular interactions in cells by dynamic and static fluorescence anisotropy (rFLIM and emFRET). Biochem Soc Trans 31(Pt 5):1020–1027PubMedCrossRefGoogle Scholar
  63. 63.
    Vishwasrao HD, Heikal AA, Kasischke KA, Webb WW (2005) Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy. J Biol Chem 280(26):25119–25126PubMedCrossRefGoogle Scholar
  64. 64.
    Zheng K, Jensen TP, Savtchenko LP, Levitt JA, Suhling K, Rusakov DA (2017) Nanoscale diffusion in the synaptic cleft and beyond measured with time-resolved fluorescence anisotropy imaging. Sci Rep 7:42022PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Dmitriev RI et al (2014) Small molecule phosphorescent probes for O2 imaging in 3D tissue models. Biomater Sci 2(6):853–866CrossRefGoogle Scholar
  66. 66.
    Jahn K, Buschmann V, Hille C (2015) Simultaneous fluorescence and phosphorescence lifetime imaging microscopy in living cells. Sci Rep 5:14334PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Pahlevaninezhad H et al (2014) A high-efficiency fiber-based imaging system for co-registered autofluorescence and optical coherence tomography. Biomed Opt Express 5(9):2978–2987Google Scholar
  68. 68.
    Jiang M, Liu T, Liu X, Jiao S (2014) Simultaneous optical coherence tomography and lipofuscin autofluorescence imaging of the retina with a single broadband light source at 480nm. Biomed Opt Express 5(12):4242–4248PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Khan KM, Kumar R, Krishna H, Rao KD, Majumder SK (2016) A dual-modal optical system combining depth-sensitive laser induced fluorescence (LIF) spectroscopy and optical coherence tomography (OCT) for analyzing layered biological tissue. Biomed Spectrosc Imaging 5(3):313–324CrossRefGoogle Scholar
  70. 70.
    Dai C, Liu X, Jiao S (2012) Simultaneous optical coherence tomography and autofluorescence microscopy with a single light source. J Biomed Opt 17(8):0805021–0805023CrossRefGoogle Scholar
  71. 71.
    Pande P et al (2016) Automated analysis of multimodal fluorescence lifetime imaging and optical coherence tomography data for the diagnosis of oral cancer in the hamster cheek pouch model. Biomed Opt Express 7(5):2000–2015PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Shrestha S et al (2016) Multimodal optical coherence tomography and fluorescence lifetime imaging with interleaved excitation sources for simultaneous endogenous and exogenous fluorescence. Biomed Opt Express 7(9):3184–3197PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Jo JA et al (2010) In vivo simultaneous morphological and biochemical optical imaging of oral epithelial cancer. IEEE Trans Biomed Eng 57(10):2596–2599PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Park J, Jo JA, Shrestha S, Pande P, Wan Q, Applegate BE (2010) A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy system for simultaneous morphological and biochemical tissue characterization. Biomed Opt Express 1(1):186–200PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Datta R, Alfonso-García A, Cinco R, Gratton E (2015) Fluorescence lifetime imaging of endogenous biomarker of oxidative stress. Sci Rep 5:9848PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Jentsch S et al (2015) Retinal fluorescence lifetime imaging ophthalmoscopy measures depend on the severity of Alzheimer’s disease. Acta Ophthalmol 93(4):e241–e247PubMedCrossRefGoogle Scholar
  77. 77.
    Klemm M, Schweitzer D, Peters S, Sauer L, Hammer M, Haueisen J (2015) FLIMX: a software package to determine and analyze the fluorescence lifetime in time-resolved fluorescence data from the human eye. PLoS One 10(7):e0131640PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Schmidt J et al (2017) Fundus autofluorescence lifetimes are increased in non-proliferative diabetic retinopathy. Acta Ophthalmol 95(1):33–40PubMedCrossRefGoogle Scholar
  79. 79.
    Ramm L, Jentsch S, Augsten R, Hammer M (2014) Fluorescence lifetime imaging ophthalmoscopy in glaucoma. Albrecht Von Graefes Arch Klin Exp Ophthalmol 252(12):2025–2026CrossRefGoogle Scholar
  80. 80.
    Koenig K, Riemann I (2003) High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution. J Biomed Opt 8(3):432CrossRefGoogle Scholar
  81. 81.
    Kantelhardt SR et al (2016) In vivo multiphoton tomography and fluorescence lifetime imaging of human brain tumor tissue. J Neuro-Oncol 127(3):473–482CrossRefGoogle Scholar
  82. 82.
    König K (2008) Clinical multiphoton tomography. J Biophotonics 1(1):13–23PubMedCrossRefGoogle Scholar
  83. 83.
    Lin LL et al (2011) Time-correlated single photon counting for simultaneous monitoring of zinc oxide nanoparticles and NAD(P)H in intact and barrier-disrupted volunteer skin. Pharm Res 28(11):2920PubMedCrossRefGoogle Scholar
  84. 84.
    Marsh PN, Burns D, Girkin JM (2003) Practical implementation of adaptive optics in multiphoton microscopy. Opt Express 11(10):1123–1130PubMedCrossRefGoogle Scholar
  85. 85.
    Patton BR, Burke D, Owald D, Gould TJ, Bewersdorf J, Booth MJ (2016) Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics. Opt Express 24(8):8862–8876PubMedCrossRefGoogle Scholar
  86. 86.
    Gould TJ, Burke D, Bewersdorf J, Booth MJ (2012) Adaptive optics enables 3D STED microscopy in aberrating specimens. Opt Express 20(19):20998–21009PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Royer LA et al (2016) Adaptive light-sheet microscopy for long-term, high-resolution imaging in living organisms. Nat Biotechnol 34(12):1267–1278PubMedCrossRefGoogle Scholar
  88. 88.
    Auksorius E et al (2008) Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging. Opt Lett 33(2):113PubMedCrossRefGoogle Scholar
  89. 89.
    Lesoine MD, Bose S, Petrich JW, Smith EA (Jul. 2012) Supercontinuum stimulated emission depletion fluorescence lifetime imaging. J Phys Chem B 116(27):7821–7826PubMedCrossRefGoogle Scholar
  90. 90.
    Hauschild T, Jentschel M (2001) Comparison of maximum likelihood estimation and chi-square statistics applied to counting experiments. Nucl Instrum Methods Phys Res Sect Accel Spectrometers Detect Assoc Equip 457(1–2):384–401Google Scholar
  91. 91.
    Kim J, Seok J (2013) Statistical properties of amplitude and decay parameter estimators for fluorescence lifetime imaging. Opt Express 21(5):6061–6075PubMedCrossRefGoogle Scholar
  92. 92.
    Rowley MI, Coolen ACC, Vojnovic B, Barber PR (2016) Robust Bayesian fluorescence lifetime estimation, decay model selection and instrument response determination for low-intensity FLIM imaging. PLoS One 11(6):e0158404PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Rowley MI, Barber PR, Coolen ACC, Vojnovic B (2011) Bayesian analysis of fluorescence lifetime imaging data. Proc SPIE 7903:790325CrossRefGoogle Scholar
  94. 94.
    Barber PR et al (2009) Multiphoton time-domain fluorescence lifetime imaging microscopy: practical application to protein–protein interactions using global analysis. J R Soc Interface 6(Suppl 1):S93–S105CrossRefGoogle Scholar
  95. 95.
    Lee KCB et al (2001) Application of the stretched exponential function to fluorescence lifetime imaging. Biophys J 81(3):1265–1274PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Włodarczyk J, Kierdaszuk B (2003) Interpretation of fluorescence decays using a power-like model. Biophys J 85(1):589–598PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Köllner M, Wolfrum J (1992) How many photons are necessary for fluorescence-lifetime measurements? Chem Phys Lett 200(1–2):199–204CrossRefGoogle Scholar
  98. 98.
    Lee S-JR, Escobedo-Lozoya Y, Szatmari EM, Yasuda R (2009) Activation of CaMKII in single dendritic spines during long-term potentiation. Nature 458(7236):299–304PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Padilla-Parra S, Audugé N, Coppey-Moisan M, Tramier M (2008) Quantitative FRET analysis by fast acquisition time domain FLIM at high spatial resolution in living cells. Biophys J 95(6):2976–2988PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Leray A, Padilla-Parra S, Roul J, Héliot L, Tramier M (2013) Spatio-temporal quantification of FRET in living cells by fast time-domain FLIM: a comparative study of non-fitting methods. PLoS One 8(7):e69335PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Knutson JR, Beechem JM, Brand L (1983) Simultaneous analysis of multiple fluorescence decay curves: a global approach. Chem Phys Lett 102(6):501–507CrossRefGoogle Scholar
  102. 102.
    Verveer PJ, Squire A, Bastiaens PIH (2000) Global analysis of fluorescence lifetime imaging microscopy data. Biophys J 78(4):2127–2137PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Warren SC et al (2013) Rapid global fitting of large fluorescence lifetime imaging microscopy datasets. PLoS One 8(8):e70687PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Digman MA, Caiolfa VR, Zamai M, Gratton E (2008) The phasor approach to fluorescence lifetime imaging analysis. Biophys J 94(2):L14–L16Google Scholar
  105. 105.
    Jo JA, Fang Q, Marcu L (2005) Ultrafast method for the analysis of fluorescence lifetime imaging microscopy data based on the Laguerre expansion technique. IEEE J Quantum Electron 11(4):835–845PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Jo JA, Fang Q, Papaioannou T, Marcu L (2004) Fast model-free deconvolution of fluorescence decay for analysis of biological systems. J Biomed Opt 9(4):743–752PubMedCrossRefGoogle Scholar
  107. 107.
    Le Marois A, Labouesse S, Suhling K, Heintzmann R (2016) Noise-corrected principal component analysis of fluorescence lifetime imaging data. J Biophotonics. https://doi.org/10.1002/jbio.201600160
  108. 108.
    Poland SP et al (2015) A high speed multifocal multiphoton fluorescence lifetime imaging microscope for live-cell FRET imaging. Biomed Opt Express 6(2):277–296PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Schroeer U TriM scope II FLIM device. LaVision BioTec GmbH. [Online]. Available from: http://lavisionbiotec.com/trim-scope-ii-flim-device.html. (Accessed 28 Mar 2017)
  110. 110.
    Rinnenthal JL et al (2013) Parallelized TCSPC for dynamic intravital fluorescence lifetime imaging: quantifying neuronal dysfunction in neuroinflammation. PLoS One 8(4):e60100PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of PhysicsKing’s College LondonLondonUK

Personalised recommendations