Advertisement

A Shared Memory Parallel Heuristic Algorithm for the Large-Scale p-Median Problem

  • Igor VasilyevEmail author
  • Anton Ushakov
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 217)

Abstract

We develop a modified hybrid sequential Lagrangean heuristic for the p-median problem and its shared memory parallel implementation using the OpenMP interface. The algorithm is based on finding the sequences of lower and upper bounds for the optimal value by use of a Lagrangean relaxation method with a subgradient column generation and a core selection approach in combination with a simulated annealing. The parallel algorithm is implemented using the shared memory (OpenMP) technology. The algorithm is then tested and compared with the most effective modern methods on a set of test instances taken from the literature.

Keywords

p-median problem Parallel computing OpenMP 

Notes

Acknowledgements

The work of A. Ushakov is supported by the Russian Science Foundation under grant 17-71-10176.

References

  1. 1.
    Irkutsk Supercomputer Centre of SB RAS (2017). http://hpc.icc.ru
  2. 2.
    Avella, P., Boccia, M., Salerno, S., Vasilyev, I.: An aggregation heuristic for large scale p-median problem. Comput. Oper. Res. 39(7), 1625–1632 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Avella, P., Sassano, A., Vasilyev, I.: Computational study of large-scale \(p\)-median problems. Math. Program. 109(1), 89–114 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Crainic, T.G., Gendreau, M., Hansen, P., Mladenović, N.: Cooperative parallel variable neighborhood search for the \(p\)-median. J. Heuristics 10(3), 293–314 (2004)CrossRefGoogle Scholar
  5. 5.
    Daskin, M.S., Maass, K.L.: The p-median problem. In: Laporte, G., Nickel, S., da Gama, F.S. (eds.) Location Science, pp. 21–45. Springer, Cham (2015)Google Scholar
  6. 6.
    García, S., Labbé, M., Marín, A.: Solving large p-median problems with a radius formulation. INFORMS J. Comput. 23(4), 546–556 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Garcia-López, F., Melián-Batista, B., Moreno-Pérez, J.A., Moreno-Vega, J.M.: The parallel variable neighborhood search for the p-median problem. J. Heuristics 8(3), 375–388 (2002)CrossRefzbMATHGoogle Scholar
  8. 8.
    Garcia-López, F., Melián-Batista, B., Moreno-Pérez, J.A., Moreno-Vega, J.M.: Parallelization of the scatter search for the p-median problem. Parallel computing in logistics. Parallel Comput. 29(5), 575–589 (2003)Google Scholar
  9. 9.
    Hakimi, S.L.: Optimum distribution of switching centers in a communication network and some related graph theoretic problems. Oper. Res. 13(3), 462–475 (1965)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Hanafi, S., Sterle, C., Ushakov, A., Vasilyev, I.: A parallel subgradient algorithm for Lagrangean dual function of the \(p\)-median problem. Studia Informatica Universalis 9(3), 105–124 (2011)Google Scholar
  11. 11.
    Hansen, P., Brimberg, J., Urosević, D., Mladenović, N.: Solving large \(p\)-median clustering problems by primal-dual variable neighborhood search. Data Min. Knowl. Discov. 19(3), 351–375 (2009)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Hansen, P., Jaumard, B.: Cluster analysis and mathematical programming. Math. Program. 79(1–3), 191–215 (1997)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Hoare, C.A.R.: Algorithm 65: Find. Commun. ACM 4(7), 321–322 (1961).  https://doi.org/10.1145/366622.366647
  14. 14.
    Irawan, C.A., Salhi, S.: Solving large p-median problems by a multistage hybrid approach using demand points aggregation and variable neighbourhood search. J. Glob. Optim. 63(3), 537–554 (2015).  https://doi.org/10.1007/s10898-013-0080-z CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Irawan, C.A., Salhi, S., Scaparra, M.P.: An adaptive multiphase approach for large unconditional and conditional p-median problems. Eur. J. Oper. Res. 237(2), 590–605 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Kariv, O., Hakimi, S.: An algorithmic approach to network location problems. I: the \(p\)-centers. SIAM J. Appl. Math. 37(3), 513–538 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Ma, L., Lim, G.J.: GPU-based parallel vertex substitution algorithm for the \(p\)-median problem. Comput. Ind. Eng. 64(1), 381–388 (2013)CrossRefGoogle Scholar
  18. 18.
    Mladenović, N., Brimberg, J., Hansen, P., Moreno-Pérez, J.: The \(p\)-median problem: a survey of metaheuristic approaches. Eur. J. Oper. Res. 179(3), 927–939 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Redondo, J.L., Marín, A., Ortigosa, P.M.: A parallelized Lagrangean relaxation approach for the discrete ordered median problem. Ann. Oper. Res. 246(1), 253–272 (2014).  https://doi.org/10.1007/s10479-014-1744-x zbMATHMathSciNetGoogle Scholar
  20. 20.
    Reese, J.: Solution methods for the p-median problem: an annotated bibliography. Networks 28(3), 125–142 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Resende, M.G.C., Werneck, R.F.: A hybrid heuristic for the \(p\)-median problem. J. Heuristics 10(1), 59–88 (2004)CrossRefzbMATHGoogle Scholar
  22. 22.
    Ushakov, A.V., Klimentova, X., Vasilyev, I.: Bi-level and bi-objective p-median type problems for integrative clustering: application to analysis of cancer gene-expression and drug-response data. IEEE-ACM Trans. Comput. Biol. Bioinform. (2016).  https://doi.org/10.1109/TCBB.2016.2622692
  23. 23.
    Ushakov, A.V., Vasilyev, I.L., Gruzdeva, T.V.: A computational comparison of the p-median clustering and k-means. Int. J. Artif. Intel. 13(1), 229–242 (2015)Google Scholar
  24. 24.
    Whitaker, R.A.: A fast algorithm for the greedy interchange for large-scale clustering and median location problems. Can. J. Oper. Res. Inf. Process. 21, 95–108 (1983)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Matrosov Institute for System Dynamics and Control Theory of the Siberian Branch of the Russian Academy of SciencesIrkutskRussia

Personalised recommendations