Analysis of Incomplete Circuits Using Dependency Quantified Boolean Formulas

  • Ralf Wimmer
  • Karina Wimmer
  • Christoph Scholl
  • Bernd Becker
Chapter

Abstract

We consider Dependency Quantified Boolean Formulas (DQBFs), a generalization of Quantified Boolean Formulas (QBFs), and demonstrate that DQBFs are a natural calculus to exactly express the realizability problem of incomplete combinational and sequential circuits with an arbitrary number of (combinational or bounded-memory) black boxes. In contrast to usual approaches for controller synthesis, restrictions to the interfaces of missing circuit parts in distributed architectures are strictly taken into account. We present a solution method for DQBFs together with the extraction of Skolem functions for existential variables, which can directly serve as implementations for the black boxes. First experimental results are provided.

Keywords

DQBF Synthesis Incomplete circuits Solver Skolem functions 

References

  1. 1.
    P. Ashar, M.K. Ganai, A. Gupta, F. Ivancic, Z. Yang, Efficient SAT-based bounded model checking for software verification, in International Symposium on Leveraging Applications of Formal Methods (ISoLA), ed. by T. Margaria, B. Steffen, A. Philippou, M. Reitenspieß, Technical Report, Paphos, Cyprus, vol. TR-2004-6 (Department of Computer Science, University of Cyprus, 2004), pp. 157–164Google Scholar
  2. 2.
    V. Balabanov, H.-J. Katherine Chiang, J.-H.R. Jiang, Henkin quantifiers and Boolean formulae: a certification perspective of DQBF. Theor. Comput. Sci. 523, 86–100 (2014)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    A. Biere, A. Cimatti, E.M. Clarke, O. Strichman, Y. Zhu, Bounded model checking. Adv. Comput. 58, 117–148 (2003)CrossRefGoogle Scholar
  4. 4.
    R. Bloem, R. Könighofer, M. Seidl, SAT-based synthesis methods for safety specs, in Proceedings of VMCAI, ed. by K.L. McMillan, X. Rival. Lecture Notes in Computer Science, San Diego, CA, vol. 8318 (Springer, Berlin, 2014 ), pp. 1–20Google Scholar
  5. 5.
    R. Bloem, U. Egly, P. Klampfl, R. Könighofer, F. Lonsing, M. Seidl, Satisfiability-based methods for reactive synthesis from safety specifications. CoRR, abs/1604.06204 (2016), http://arxiv.org/abs/1604.06204
  6. 6.
    R.K. Brayton, A. Mishchenko, ABC: an academic industrial-strength verification tool, in Proceedings of CAV, ed. by T. Touili, B. Cook, P. Jackson. Lecture Notes in Computer Science, Edinburgh, vol. 6174 (Springer, Berlin, 2010), pp. 24–40Google Scholar
  7. 7.
    U. Bubeck, Model-based transformations for quantified Boolean formulas. PhD thesis, University of Paderborn (2010)Google Scholar
  8. 8.
    U. Bubeck, H. Kleine Büning, Dependency quantified Horn formulas: models and complexity, in Proceedings of SAT, ed. by A. Biere, C.P. Gomes. Lecture Notes in Computer Science, Seattle, WA, vol. 4121 (Springer, Berlin, 2006), pp. 198–211Google Scholar
  9. 9.
    E.M. Clarke, A. Biere, R. Raimi, Y. Zhu, Bounded model checking using satisfiability solving. Formal Methods Syst. Des. 19(1), 7–34 (2001)CrossRefMATHGoogle Scholar
  10. 10.
    S.A. Cook, The complexity of theorem-proving procedures, in Proceedings of STOC (ACM, New York, 1971), pp. 151–158Google Scholar
  11. 11.
    A. Czutro, I. Polian, M.D.T. Lewis, P. Engelke, S.M. Reddy, B. Becker, Thread-parallel integrated test pattern generator utilizing satisfiability analysis. Int. J. Parallel Prog. 38(3–4),185–202 (2010)CrossRefMATHGoogle Scholar
  12. 12.
    W. Damm, B. Finkbeiner, Automatic compositional synthesis of distributed systems, in Proceedings of FM, ed. by C.B. Jones, P. Pihlajasaari, J. Sun. Lecture Notes in Computer Science, Singapore, vol. 8442 (Springer, Berlin, 2014), pp. 179–193Google Scholar
  13. 13.
    S. Eggersglüß, R. Drechsler, A highly fault-efficient SAT-based ATPG flow. IEEE Des. Test Comput. 29(4), 63–70 (2012)CrossRefGoogle Scholar
  14. 14.
    B. Finkbeiner, S. Schewe, Bounded synthesis. Int. J. Softw. Tools Technol. Transfer 15(5–6), 519–539 (2013)CrossRefMATHGoogle Scholar
  15. 15.
    B. Finkbeiner, L. Tentrup, Fast DQBF refutation, in Proceedings of SAT, ed. by C. Sinz, U. Egly. Lecture Notes in Computer Science, Vienna, vol. 8561 (Springer, Berlin, 2014), pp. 243–251Google Scholar
  16. 16.
    A. Fröhlich, G. Kovásznai, A. Biere, A DPLL algorithm for solving DQBF, in International Workshop on Pragmatics of SAT (POS), Trento (2012)Google Scholar
  17. 17.
    A. Fröhlich, G. Kovásznai, A. Biere, H. Veith, iDQ: instantiation-based DQBF solving, in International Workshop on Pragmatics of SAT (POS), ed. by D. Le Berre. EPiC Series, Vienna, vol. 27 ( EasyChair, 2014), pp. 103–116Google Scholar
  18. 18.
    K. Gitina, S. Reimer, M. Sauer, R. Wimmer, C. Scholl, B. Becker, Equivalence checking for partial implementations revisited, in Proceedings of MBMV, ed. by C. Haubelt, D. Timmermann, Rostock (Universität Rostock, ITMZ, 2013), pp. 61–70Google Scholar
  19. 19.
    K. Gitina, S. Reimer, M. Sauer, R. Wimmer, C. Scholl, B. Becker, Equivalence checking of partial designs using dependency quantified Boolean formulae, in Proceedings of ICCD, Asheville, NC (IEEE CS, 2013), pp. 396–403Google Scholar
  20. 20.
    K. Gitina, R. Wimmer, S. Reimer, M. Sauer, C. Scholl, B. Becker, Solving DQBF through quantifier elimination, in Proceedings of DATE, Grenoble (IEEE, New York, 2015)Google Scholar
  21. 21.
    M. Herbstritt, B. Becker, C. Scholl, Advanced SAT-techniques for bounded model checking of blackbox designs, in Proceedings of MTV (IEEE, New York, 2006), pp. 37–44Google Scholar
  22. 22.
    F. Lonsing, A. Biere, DepQBF: a dependency-aware QBF solver. J. Satisf. Boolean Model. Comput. 7(2–3), 71–76 (2010)Google Scholar
  23. 23.
    F. Lonsing, F. Bacchus, A. Biere, U. Egly, M. Seidl, Enhancing search-based QBF solving by dynamic blocked clause elimination, in Proceedings of LPAR, ed. by M. Davis, A. Fehnker, A. McIver, A. Voronkov. Lecture Notes in Computer Science, Suva, vol. 9450 (Springer, Berlin, 2015), pp. 418–433Google Scholar
  24. 24.
    K.L. McMillan, Applications of Craig interpolants in model checking, in Proceedings of TACAS, ed. by N. Halbwachs, L.D. Zuck. Lecture Notes in Computer Science, Edinburgh, vol. 3440 (Springer, Berlin, 2005), pp. 1–12Google Scholar
  25. 25.
    T. Nopper, C. Scholl, Symbolic model checking for incomplete designs with flexible modeling of unknowns. IEEE Trans. Comput. 62(6), 1234–1254 (2013)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    G. Peterson, J. Reif, S. Azhar, Lower bounds for multiplayer non-cooperative games of incomplete information. Comput. Math. Appl. 41(7–8), 957–992 (2001)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    F. Pigorsch, C. Scholl, Exploiting structure in an AIG based QBF solver, in Proceedings of DATE (IEEE, New York, 2009), pp. 1596–1601Google Scholar
  28. 28.
    A. Pnueli, R. Rosner, Distributed reactive systems are hard to synthesize, in Annual Symposium on Foundations of Computer Science, St. Louis, MO (IEEE Computer Society, Washington, 1990), pp. 746–757Google Scholar
  29. 29.
    C. Scholl, B. Becker, Checking equivalence for partial implementations, in Proceedings of DAC, Las Vegas, NV (ACM, New York, 2001), pp. 238–243Google Scholar
  30. 30.
    C.-J.H. Seger, R.E. Bryant, Formal verification by symbolic evaluation of partially-ordered trajectories. Formal Methods Syst. Des. 6(2), 147–189 (1995)CrossRefGoogle Scholar
  31. 31.
    C.-J.H. Seger, R.B. Jones, J.W. O’Leary, T.F. Melham, M. Aagaard, C. Barrett, D. Syme, An industrially effective environment for formal hardware verification. IEEE Trans. CAD Integr. Circuits Syst. 24(9), 1381–1405 (2005)CrossRefGoogle Scholar
  32. 32.
    G.S. Tseitin, On the complexity of derivation in propositional calculus, in Studies in Constructive Mathematics and Mathematical Logic Part 2 (Springer, Berlin, 1970), pp. 115–125Google Scholar
  33. 33.
    R. Wimmer, K. Gitina, J. Nist, C. Scholl, B. Becker, Preprocessing for DQBF, in Proceedings of SAT, ed. by M. Heule, S. Weaver. Lecture Notes in Computer Science, Austin, TX, vol. 9340 (Springer, Berlin, 2015), pp. 173–190Google Scholar
  34. 34.
    K. Wimmer, R. Wimmer, C. Scholl, B. Becker, Skolem functions for DQBF, in Proceedings of ATVA, Lecture Notes in Computer Science, Chiba, vol. 9938 (Springer, Berlin, 2016), pp. 395–411Google Scholar
  35. 35.
    K. Wimmer, R. Wimmer, C. Scholl, B. Becker, Skolem functions for DQBF (extended version). Technical Report, FreiDok, Freiburg im Breisgau (2016), https://www.freidok.uni-freiburg.de/data/11130 MATHGoogle Scholar
  36. 36.
    R. Wimmer, S. Reimer, P. Marin, B. Becker, HQSpre–an effective preprocessor for QBF and DQBF, in Proceedings of TACAS, Part I, ed. by A. Legay, T. Margaria. Lecture Notes in Computer Science, Uppsala, vol. 10205 (Springer, Berlin, 2017)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ralf Wimmer
    • 1
  • Karina Wimmer
    • 1
  • Christoph Scholl
    • 1
  • Bernd Becker
    • 1
  1. 1.Institute of Computer ScienceAlbert-Ludwigs-Universität FreiburgFreiburg im BreisgauGermany

Personalised recommendations