Advertisement

Emerging Circuit Technologies: An Overview on the Next Generation of Circuits

  • Robert Wille
  • Krishnendu Chakrabarty
  • Rolf Drechsler
  • Priyank Kalla
Chapter

Abstract

In the last decades, great progress has been made in the development of computing machines resulting in electronic systems which can be found in almost every aspect of our daily life. All this has become possible due to the achievements made in the domain of semiconductors which is usually associated with Moore’s Law—the famous prediction by Gordon Moore that the number of transistors in an electronic device doubles every 18 months. While this prediction is still holding on, physical boundaries and cost restrictions of conventional CMOS-based circuitry led to an increasing interest in alternative technologies (so called More than Moore technologies). Besides that, the advances according to Moore’s Law also lead to the consideration of application areas for electronic systems which go beyond just performing computations and complement the digital part by non-digital functionality (leading to so called More than Moore technologies).

References

  1. 1.
    M. Alistar, P. Pop, J. Madsen, Redundancy optimization for error recovery in digital microfluidic biochips. Des. Autom. Embed. Syst. 19(1–2), 129–159 (2015)CrossRefGoogle Scholar
  2. 2.
    A. Barenco, C.H. Bennett, R. Cleve, D. DiVinchenzo, N. Margolus, P. Shor, T. Sleator, J. Smolin, H. Weinfurter, Elementary gates for quantum computation. Am. Phys. Soc. 52, 3457–3467 (1995)Google Scholar
  3. 3.
    C. Batten, A. Joshi, V. Stojanovic, K. Asanovic, Designing chip-level nanophotonic interconnection networks. IEEE J. Emerging Sel. Top. Circuits Syst. 2(2), 137–153 (2012). doi:10.1109/JETCAS.2012.2193932CrossRefGoogle Scholar
  4. 4.
    R. Beausoleil et al., A nanophotonic interconnect for high-performance many-core computation, in Symposium on High-Performance Interconnects, pp. 182–189 (2008). doi:http://doi.ieeecomputersociety.org/10.1109/HOTI.2008.32Google Scholar
  5. 5.
    L. Benini, G.D. Micheli, E. Macii, M. Poncino, S. Quer, Power optimization of core-based systems by address bus encoding. IEEE Trans. VLSI Syst. 6(4), 554–562 (1998). doi:10.1109/92.736127. http://dx.doi.org/10.1109/92.736127 CrossRefGoogle Scholar
  6. 6.
    L. Benini, G.D. Micheli, D. Sciuto, E. Macii, C. Silvano, Address bus encoding techniques for system-level power optimization, in Design, Automation and Test in Europe, pp. 861–866 (1998). doi:10.1109/DATE.1998.655959. http://dx.doi.org/10.1109/DATE.1998.655959
  7. 7.
    C.H. Bennett, Logical reversibility of computation. IBM J. Res. Dev 17(6), 525–532 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    A. Berut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider, E. Lutz, Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483, 187–189 (2012)CrossRefGoogle Scholar
  9. 9.
    C.R. Brown, C. Mao, E. Falkovskaia, M.S. Jurica, H. Boeger, Linking stochastic fluctuations in chromatin structure and gene expression. PLoS Biol. 11(8), e1001621 (2013)Google Scholar
  10. 10.
    W. Bogaerts et al., Silicon microring resonators. Laser Photonics Rev. 6(1), 47–73 (2012). doi:10.1002/lpor.201100017. http://dx.doi.org/10.1002/lpor.201100017 CrossRefGoogle Scholar
  11. 11.
    D. Bogojevic, M.D. Chamberlain, I. Barbulovic-Nad, A.R. Wheeler, A digital microfluidic method for multiplexed cell-based apoptosis assays. Lab Chip 12(3), 627–634 (2012)CrossRefGoogle Scholar
  12. 12.
    O. Boyraz, B. Jalali, Demonstration of a silicon Raman laser. Opt. Exp. 12(21), 5269–5273 (2004). doi:10.1364/OPEX.12.005269. http://www.opticsexpress.org/abstract.cfm?URI=oe-12-21-5269 CrossRefGoogle Scholar
  13. 13.
    H.J. Caulfield et al., Generalized optical logic elements GOLEs. Opt. Commun. 271, 365–376 (2007)CrossRefGoogle Scholar
  14. 14.
    J. Chan, G. Hendry, K. Bergman, L.P. Carloni, Physical-layer modeling and system-level design of chip-scale photonic interconnection networks. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 30(10), 1507–1520 (2011). https://doi.org/10.1109/TCAD.2011.2157157 CrossRefGoogle Scholar
  15. 15.
    M. Cho, D.Z. Pan, A high-performance droplet routing algorithm for digital microfluidic biochips. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(10), 1714–1724 (2008)CrossRefGoogle Scholar
  16. 16.
    M.J. Cianchetti, J.C. Kerekes, D.H. Albonesi, Phastlane: a rapid transit optical routing network, in ACM SIGARCH Computer Architecture News, vol. 37 (ACM, New York, 2009), pp. 441–450Google Scholar
  17. 17.
    C. Condrat, P. Kalla, S. Blair, Logic synthesis for integrated optics, in Proceedings of the 21st Edition of the Great Lakes Symposium on Great Lakes Symposium on VLSI, GLSVLSI ’11 (ACM, New York, 2011), pp. 13–18. doi:10.1145/1973009.1973013. http://doi.acm.org/10.1145/1973009.1973013 CrossRefGoogle Scholar
  18. 18.
    C. Condrat, P. Kalla, S. Blair, Crossing-aware channel routing for integrated optics. IEEE Trans. CAD of Integr. Circuits Syst. 33(5), 814–825 (2014)CrossRefGoogle Scholar
  19. 19.
    C. Condrat, P. Kalla, S. Blair, Thermal-aware synthesis of integrated photonic ring resonators, in International Conference On Computer Aided Design (CAD), pp. 557–564 (2014)Google Scholar
  20. 20.
    C. Condrat, P. Kalla, S. Blair, More than moore technologies for next generation computer design, in Design Automation for On-Chip Nanophotonic Integration (Springer, New York, 2015), pp. 187–218CrossRefGoogle Scholar
  21. 21.
    A. Deb, R. Wille, O. Keszöcze, S. Hillmich, R. Drechsler, Gates vs. splitters: contradictory optimization objectives in the synthesis of optical circuits. J. Emerg. Technol. Comput. Syst. 13(1), 11 (2016)Google Scholar
  22. 22.
    R. Drechsler, R. Wille, From truth tables to programming languages: progress in the design of reversible circuits, in International Symposium on Multi-Valued Logic, pp. 78–85 (2011)Google Scholar
  23. 23.
    FDA News, FDA Advisors Back Approval of Baebies’ Seeker Analyzer for Newborns (2016), [Online]. Available: http://www.fdanews.com/articles/178103-fda-advisors-back-approval-ofbaebies-seeker-analyzer-for-newborns
  24. 24.
    F. Gan, T. Barwicz, M. Popovic, M. Dahlem, C. Holzwarth, P.T. Rakich, H. Smith, E. Ippen, F. Kartner, Maximizing the thermo-optic tuning range of silicon photonic structures, in Photonics in Switching, 2007, pp. 67–68 (2007). doi:10.1109/PS.2007.4300747Google Scholar
  25. 25.
    A. García-Ortiz, D. Gregorek, C. Osewold, Optimization of interconnect architectures through coding: a review, in Electronics, Communications and Photonics Conference (SIECPC), 2011 Saudi International, pp. 1–6 (2011). doi:10.1109/SIECPC.2011.5876688Google Scholar
  26. 26.
    GenMark Dx, GenMark ePlex System (2016), [Online]. Available: https://www.genmarkdx.com/solutions/systems/eplex-system/
  27. 27.
    N. Gershenfeld, Signal entropy and the thermodynamics of computation. IBM Syst. J. 35(3–4), 577–586 (1996)CrossRefGoogle Scholar
  28. 28.
    W. Green et al., Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator. Opt. Exp. 15(25), 17,106–17,113 (2007). http://www.opticsexpress.org/abstract.cfm?id=148351 CrossRefGoogle Scholar
  29. 29.
    E.J. Griffith, S. Akella, M.K. Goldberg, Performance characterization of a reconfigurable planar-array digital microfluidic system. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25(2), 340–352 (2006)CrossRefGoogle Scholar
  30. 30.
    D. Grissom, P. Brisk, A field-programmable pin-constrained digital microfluidic biochip, in Proceedings of IEEE/ACM Design Automation Conference (DAC), pp. 1–9 (2013)Google Scholar
  31. 31.
    D.T. Grissom, P. Brisk, Fast online synthesis of digital microfluidic biochips. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 33(3), 356–369 (2014)CrossRefGoogle Scholar
  32. 32.
    D. Große, R. Wille, G.W. Dueck, R. Drechsler, Exact multiple control Toffoli network synthesis with SAT techniques. IEEE Trans. CAD 28(5), 703–715 (2009)CrossRefGoogle Scholar
  33. 33.
    L.K. Grover, A fast quantum mechanical algorithm for database search, in Theory of Computing, pp. 212–219 (1996)Google Scholar
  34. 34.
    S. Hosic, S.K. Murthy, A.N. Koppes, Microfluidic sample preparation for single cell analysis. Anal. Chem. 88(1), 354–380 (2015)CrossRefGoogle Scholar
  35. 35.
    Y.-L. Hsieh, T-Y. Ho, K. Chakrabarty, A reagent-saving mixing algorithm for preparing multiple-target biochemical samples using digital microfluidics. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 31(11), 1656–1669 (2012)CrossRefGoogle Scholar
  36. 36.
    K. Hu, B.-N. Hsu, A. Madison, K. Chakrabarty, R. Fair, Fault detection, real-time error recovery, and experimental demonstration for digital microfluidic biochips, in Proceedings of IEEE/ACM Design, Automation and Test in Europe (DATE), pp. 559–564 (2013)Google Scholar
  37. 37.
    K. Hu, M. Ibrahim, L. Chen, Z. Li, K. Chakrabarty, R. Fair, Experimental demonstration of error recovery in an integrated cyberphysical digital-microfluidic platform, in Proceedings of IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 1–4 (2015)Google Scholar
  38. 38.
    Z. Hua, J.L. Rouse, A.E. Eckhardt, V. Srinivasan, V.K. Pamula, W.A. Schell, J.L. Benton, T.G. Mitchell, M.G. Pollack, Multiplexed real-time polymerase chain reaction on a digital microfluidic platform. Anal. Chem. 82(6), 2310–2316 (2010)CrossRefGoogle Scholar
  39. 39.
    W. Hwang, F. Su, K. Chakrabarty, Automated design of pin-constrained digital microfluidic arrays for lab-on-a-chip applications, in Proceedings of IEEE/ACM Design Automation Conference (DAC), pp. 925–930 (2006)Google Scholar
  40. 40.
    IBM Research, Silicon Integrated Nanophotonics Technology: From Lab to Fab (2012), http://www.research.ibm.com/photonics Google Scholar
  41. 41.
    M. Ibrahim and K. Chakrabarty, Cyberphysical adaptation in digitalmicrofluidic biochips, IEEE Biomedical Circuits and Systems Conference (BioCAS), Shanghai, 2016, pp. 444–447. doi: https://doi.org/10.1109/BioCAS.2016.7833827
  42. 42.
    M. Ibrahim, K. Chakrabarty, K. Scott, Synthesis of cyberphysical digital-microfluidic biochips for real-time quantitative analysis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 36(5), 733–746 (2017). https://doi.org/10.1109/TCAD.2016.2600626 CrossRefGoogle Scholar
  43. 43.
    M. Ibrahim, K. Chakrabarty, K. Scott, Integrated and real-time quantitative analysis using cyberphysical digital-microfluidic biochips, in Proceedings of IEEE/ACM Design, Automation and Test in Europe (DATE), pp. 630–635 (2016)Google Scholar
  44. 44.
    Illumina, Illumina NeoPrep Library Prep System (2015), [Online]. Available: http://www.illumina.com/systems/neoprep-library-system.html/
  45. 45.
    C. Jaress, P. Brisk, D. Grissom, Rapid online fault recovery for cyber-physical digital microfluidic biochips, in Proceedings of IEEE VLSI Test Symposium (VTS), pp. 1–6 (2015)Google Scholar
  46. 46.
    O. Keszocze, R. Wille, R. Drechsler, Exact routing for digital microfluidic biochips with temporary blockages, in International Conference on CAD, pp. 405–410 (2014)Google Scholar
  47. 47.
    O. Keszocze, R. Wille, T.-Y. Ho, R. Drechsler, Exact one-pass synthesis of digital microfluidic biochips, in Proceedings of the IEEE/ACM Design Automation Conference (DAC) (2014)Google Scholar
  48. 48.
    O. Keszocze, R. Wille, K. Chakrabarty, R. Drechsler, A general and exact routing methodology for digital microfluidic biochips, in International Conference on CAD, pp. 874–881 (2015)Google Scholar
  49. 49.
    R. Landauer, Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183 (1961)CrossRefzbMATHMathSciNetGoogle Scholar
  50. 50.
    K. Lee, S. Lee, H. Yoo, Low-power network-on-chip for high-performance SOC design. IEEE Trans. VLSI Syst. 14(2), 148–160 (2006). doi:10.1109/TVLSI.2005.863753. http://dx.doi.org/10.1109/TVLSI.2005.863753 CrossRefGoogle Scholar
  51. 51.
    Z. Li, T.-Y. Ho, K. Chakrabarty, Optimization of 3D digital microfluidic biochips for the multiplexed polymerase chain reaction. ACM Trans. Des. Autom. Electron. Syst. 21(2), Article 25 (2016)Google Scholar
  52. 52.
    C. Liao, S. Hu, Physical-level synthesis for digital lab-on-a-chip considering variation, contamination, and defect. IEEE Trans. NanoBiosci. 13(1), 3–11 (2014)CrossRefGoogle Scholar
  53. 53.
    L. Liao et al., High speed silicon Mach-Zehnder modulator. Opt. Exp. 13(8), 3129–3135 (2005). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-8-3129 CrossRefGoogle Scholar
  54. 54.
    P. Liu, X. Li, S.A. Greenspoon, J.R. Scherer, R.A. Mathies, Integrated DNA purification, PCR, sample cleanup, and capillary electrophoresis microchip for forensic human identification. Lab Chip 11(6), 1041–1048 (2011)CrossRefGoogle Scholar
  55. 55.
    J. Lovén, D.A. Orlando, A.A. Sigova, C.Y. Lin, P.B. Rahl, C.B. Burge, D.L. Levens, T.I. Lee, R.A. Young, Revisiting global gene expression analysis. Cell 151(3), 476–482 (2012)CrossRefGoogle Scholar
  56. 56.
    Y. Luo, K. Chakrabarty, T.-Y. Ho, Error recovery in cyberphysical digital microfluidic biochips. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32(1), 59–72 (2013)CrossRefGoogle Scholar
  57. 57.
    Y. Luo, K. Chakrabarty, T.-Y. Ho, Hardware/Software Co-Design and Optimization for Cyberphysical Integration in Digital Microfluidic Biochips (Springer, Dordrecht, 2014)Google Scholar
  58. 58.
    Y. Luo, B.B. Bhattacharya, T.-Y. Ho, K. Chakrabarty, Design and optimization of a cyberphysical digital-microfluidic biochip for the polymerase chain reaction. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(1), 29–42 (2015)CrossRefGoogle Scholar
  59. 59.
    E. Maftei, P. Pop, J. Madsen, Tabu search-based synthesis of dynamically reconfigurable digital microfluidic biochips, in Proceedings of International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES), pp. 195–204 (2009)Google Scholar
  60. 60.
    D. Maslov, G.W. Dueck, Reversible cascades with minimal garbage. IEEE Trans. CAD 23(11), 1497–1509 (2004)CrossRefGoogle Scholar
  61. 61.
    D.M. Miller, D. Maslov, G.W. Dueck, A transformation based algorithm for reversible logic synthesis, in Design Automation Conference, pp. 318–323 (2003)Google Scholar
  62. 62.
    D.M. Miller, R. Wille, G. Dueck, Synthesizing reversible circuits for irreversible functions, in EUROMICRO Symposium on Digital System Design, pp. 749–756 (2009)Google Scholar
  63. 63.
    D.M. Miller, R. Wille, Z. Sasanian, Elementary quantum gate realizations for multiple-control Toffolli gates, in International Symposium on Multi-Valued Logic, pp. 288–293 (2011)Google Scholar
  64. 64.
    D. Mitra, S. Roy, S. Bhattacharjee, K. Chakrabarty, B.B. Bhattacharya, On-chip sample preparation for multiple targets using digital microfluidics. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 33(8), 1131–1144 (2014)CrossRefGoogle Scholar
  65. 65.
    M. Nielsen, I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)zbMATHGoogle Scholar
  66. 66.
    H. Norian, R.M. Field, I. Kymissis, K.L. Shepard, An integrated CMOS quantitativepolymerase- chain-reaction lab-on-chip for point-of-care diagnostics. Lab Chip 14(20), 4076–4084 (2014)CrossRefGoogle Scholar
  67. 67.
    K. Okamoto, Fundamentals of Optical Waveguides (Academic, New York, 2000)Google Scholar
  68. 68.
    OpSIS, Optoelectronic System Integration in Silicon. http://www.opsisfoundry.org
  69. 69.
    A.G. Ortiz, L.S. Indrusiak, T. Murgan, M. Glesner, Low-power coding for networks-on-chip with virtual channels. J. Low Power Electron. 5(1), 77–84 (2009). doi:10.1166/jolpe.2009.1006. http://dx.doi.org/10.1166/jolpe.2009.1006 CrossRefGoogle Scholar
  70. 70.
    P.R. Panda, N.D. Dutt, Reducing address bus transitions for low power memory mapping, in 1996 European Design and Test Conference, ED&TC 1996, Paris, March 11–14, 1996, pp. 63–71 (1996). doi:10.1109/EDTC.1996.494129. http://dx.doi.org/10.1109/EDTC.1996.494129 Google Scholar
  71. 71.
    A. Politi, J. Matthews, J. O’Brien, Shor’s quantum factoring algorithm on a photonic chip. Science 325, 1221 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  72. 72.
    A. Qouneh, Z. Li, M. Joshi, W. Zhang, X. Fu, T. Li, Aurora: a thermally resilient photonic network-on-chip architecture, in 2012 IEEE 30th International Conference on Computer Design (ICCD), pp. 379–386 (2012). doi:10.1109/ICCD.2012.6378667Google Scholar
  73. 73.
    A. Rival, D. Jary, C. Delattre, Y. Fouillet, G. Castellan, A. Bellemin-Comte, X. Gidrol, An EWOD-based microfluidic chip for single-cell isolation, mRNA purification and subsequent multiplex qPCR. Lab Chip 14(19), 3739–3749 (2014)CrossRefGoogle Scholar
  74. 74.
    H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, M. Paniccia, A continuous-wave Raman silicon laser. Nature 433, 725–728 (2005)CrossRefGoogle Scholar
  75. 75.
    S. Roy, B.B. Bhattacharya, S. Ghoshal, K. Chakrabarty, Theory and analysis of generalized mixing and dilution of biochemical fluids using digital microfluidic biochips. ACM J. Emerg. Technol. Comput. Syst. 11(1), Article. 2 (2014)Google Scholar
  76. 76.
    M. Saeedi, I.L. Markov, Synthesis and optimization of reversible circuits - a survey. ACM Comput. Surv. 45, 21:1–21:34, Article 21 (2011)Google Scholar
  77. 77.
    L. Schlitt, P. Kalla, S. Blair, A methodology for thermal characterization abstraction of integrated opto-electronic layouts, in International Conference on VLSI Design, pp. 270–275 (2016)Google Scholar
  78. 78.
    H.-H. Shen, S.-K. Fan, C.-J. Kim, D.-J. Yao, EWOD microfluidic systems for biomedical applications. Microfluid. Nanofluid. 16(5), 965–987 (2014)CrossRefGoogle Scholar
  79. 79.
    V.V. Shende, A.K. Prasad, I.L. Markov, J.P. Hayes, Synthesis of reversible logic circuits. IEEE Trans. CAD 22(6), 710–722 (2003)CrossRefGoogle Scholar
  80. 80.
    C. Shih, Z. Zeng, C. Shiuh, Extinction ratio compensation by free carrier injection for a MOS-capacitor microring optical modulator subjected to temperature drifting, in CLEO/PACIFIC RIM ’09, pp. 1–2 (2009). doi:10.1109/CLEOPR.2009.5292625Google Scholar
  81. 81.
    P.W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in Proceedings of Foundations of Computer Science, pp. 124–134 (1994)Google Scholar
  82. 82.
    R. Sista, Z. Hua, P. Thwar, A. Sudarsan, V. Srinivasan, A. Eckhardt, M. Pollack, V. Pamula, Development of a digital microfluidic platform for point of care testing. Lab Chip 8(12), 2091–2104 (2008)CrossRefGoogle Scholar
  83. 83.
    M. Soeken, S. Frehse, R. Wille, R. Drechsler, RevKit: an open source toolkit for the design of reversible circuits, in Reversible Computation 2011. Lecture Notes in Computer Science, vol. 7165 (Springer, Berlin, 2012), pp. 64–76. RevKit is available at www.revkit.org
  84. 84.
    M. Soeken, R. Wille, O. Keszocze, D.M. Miller, R. Drechsler, Embedding of large Boolean functions for reversible logic. J. Emerg. Technol. Comput. Syst. 12(4), 41:1–41:26, Article 41 (2015). https://doi.org/10.1145/2786982
  85. 85.
    R. Soref, The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006). doi:10.1109/JSTQE.2006.883151CrossRefGoogle Scholar
  86. 86.
    F. Su, K. Chakrabarty, Architectural-level synthesis of digital microfluidics-based biochips, in Proceedings of IEEE International Conference on CAD (ICCAD), pp. 223–228 (2004)Google Scholar
  87. 87.
    F. Su, K. Chakrabarty, Unified high-level synthesis and module placement for defect-tolerant microfluidic biochips, in Proceedings of IEEE/ACM Design Automation Conference (DAC), pp. 825–830 (2005)Google Scholar
  88. 88.
    F. Su, K. Chakrabarty, Module placement for fault-tolerant microfluidics-based biochips. ACM Trans. Des. Autom. Electron. Syst. 11, 682–710 (2006)CrossRefGoogle Scholar
  89. 89.
    F. Su, K. Chakrabarty, High-level synthesis of digital microfluidic biochips. ACM J. Emerg. Technol. Comput. Syst. 3(4), Article 16 (2008)Google Scholar
  90. 90.
    F. Su, W. Hwang, K. Chakrabarty, Droplet routing in the synthesis of digital microfluidic biochips, in Proceedings of Design, Automation and Test in Europe (DATE), pp. 323–328 (2006)Google Scholar
  91. 91.
    M.K. Thomsen, A functional language for describing reversible logic, in Forum on Specification and Design Languages, pp. 135–142 (2012)Google Scholar
  92. 92.
    L.M.K. Vandersypen, M. Steffen, G. Breyta, C.S. Yannoni, M.H. Sherwood, I.L. Chuang, Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414, 883 (2001)CrossRefGoogle Scholar
  93. 93.
    G.F. Viamontes, M. Rajagopalan, I.L. Markov, J.P. Hayes, Gate-level simulation of quantum circuits, in ASP Design Automation Conference, pp. 295–301 (2003)Google Scholar
  94. 94.
    R. Wille, R. Drechsler, BDD -based synthesis of reversible logic for large functions, in Design Automation Conference, pp. 270–275 (2009)Google Scholar
  95. 95.
    R. Wille, D. Große, G. Dueck, R. Drechsler, Reversible logic synthesis with output permutation, in VLSI Design, pp. 189–194 (2009)Google Scholar
  96. 96.
    R. Wille, D. Große, S. Frehse, G.W. Dueck, R. Drechsler, Debugging of Toffoli networks, in Design, Automation and Test in Europe, pp. 1284–1289 (2009)Google Scholar
  97. 97.
    R. Wille, D. Große, D.M. Miller, R. Drechsler, Equivalence checking of reversible circuits, in International Symposium on Multi-Valued Logic, pp. 324–330 (2009)Google Scholar
  98. 98.
    R. Wille, S. Offermann, R. Drechsler, SyReC: a programming language for synthesis of reversible circuits, in Forum on Specification and Design Languages, pp. 184–189 (2010)Google Scholar
  99. 99.
    R. Wille, D. Große, S. Frehse, G.W. Dueck, R. Drechsler, Debugging reversible circuits. Integration 44(1), 51–61 (2011)Google Scholar
  100. 100.
    R. Wille, O. Keszöcze, R. Drechsler, Determining the minimal number of lines for large reversible circuits, in Design, Automation and Test in Europe (2011)Google Scholar
  101. 101.
    R. Wille, R. Drechsler, C. Osewold, A.G. Ortiz, Automatic design of low-power encoders using reversible circuit synthesis, in Design, Automation and Test in Europe, pp. 1036–1041 (2012)Google Scholar
  102. 102.
    R. Wille, M. Soeken, D.M. Miller, R. Drechsler, Trading off circuit lines and gate costs in the synthesis of reversible logic. Integration 47(2), 284–294 (2014)Google Scholar
  103. 103.
    R. Wille, O. Keszocze, C. Hopfmuller, R. Drechsler, Reverse BDD-based synthesis for splitter-free optical circuits, in Asia and South Pacific Design Automation Conference, pp. 172–177 (2015)Google Scholar
  104. 104.
    R. Wille, O. Keszocze, S. Hillmich, M. Walter, A.G. Ortiz, Synthesis of approximate coders for on-chip interconnects using reversible logic, in Design, Automation and Test in Europe, pp. 1140–1143 (2016). http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=7459481
  105. 105.
    R. Wille, E. Schönborn, M. Soeken, R. Drechsler, SyReC: a hardware description language for the specification and synthesis of reversible circuits. Integr. VLSI J. 53, 39–53 (2016)CrossRefGoogle Scholar
  106. 106.
    B.S. Wheeler, J.A. Blau, H.F. Willard, K.C. Scott, The impact of local genome sequence on defining heterochromatin domains. PLoS Genet. 5(4), 1–15 (2009)CrossRefGoogle Scholar
  107. 107.
    B.S. Wheeler, B.T. Ruderman, H.F. Willard, K.C. Scott, Uncoupling of genomic and epigenetic signals in the maintenance and inheritance of heterochromatin domains in fission yeast. Genetics 190(2), 549–557 (2012)CrossRefGoogle Scholar
  108. 108.
    T. Xu, K. Chakrabarty, Integrated droplet routing in the synthesis of microfluidic biochips, in Proceedings of IEEE/ACM Design Automation Conference (DAC), pp. 948–953 (2007)Google Scholar
  109. 109.
    T. Xu, K. Chakrabarty, A Cross-referencing-based droplet manipulation method for high-throughput and pin-constrained digital microfluidic arrays, in Proceedings of IEEE/ACM Design, Automation and Test in Europe (DATE), pp. 552–557 (2007)Google Scholar
  110. 110.
    T. Xu, K. Chakrabarty, Broadcast electrode-addressing for pin-constrained multi-functional digital microfluidic biochips, in Proceedings of IEEE/ACM Design Automation Conference (DAC), pp. 173–178 (2008)Google Scholar
  111. 111.
    T. Xu, K. Chakrabarty, Integrated droplet routing and defect tolerance in the synthesis of digital microfluidic biochips. ACM J. Emerg. Technol. Comput. Syst. 4(3), Article 11 (2008)Google Scholar
  112. 112.
    T. Xu, K. Chakrabarty, A droplet-manipulation method for achieving high-throughput in cross-referencing-based digital microfluidic biochips. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(11), 1905–1917 (2008)CrossRefGoogle Scholar
  113. 113.
    P.-H. Yuh, C.-L. Yang, Y.-W. Chang, BioRoute: a network flow based routing algorithm for digital microfluidic biochips, in Proceedings of IEEE International Conference on Computer-Aided Design (ICCAD), pp. 752–757 (2007)Google Scholar
  114. 114.
    P.-H. Yuh, C.-L. Yang, C.-W. Chang, Placement of defect-tolerant digital microfluidic biochips using the T-tree formulation. ACM J. Emerg. Technol. Comput. Syst. 3(3), 13.1–13.32 (2007)CrossRefGoogle Scholar
  115. 115.
    P. Zeitzoff, J. Chung, A perspective from the 2003 ITRS. IEEE Circuits Syst. Mag. 21, 4–15 (2005)CrossRefGoogle Scholar
  116. 116.
    Y. Zhao, K. Chakrabarty, Cross-contamination avoidance for droplet routing in digital microfluidic biochips, in Proceedings of IEEE/ACM Design, Automation and Test in Europe (DATE), pp. 1290–1295 (2009)Google Scholar
  117. 117.
    Y. Zhao, K. Chakrabarty, Synchronization of washing operations with droplet routing for cross-contamination avoidance in digital microfluidic biochips, in Proceedings of IEEE/ACM Design Automation Conference (DAC), pp. 635–640 (2010)Google Scholar
  118. 118.
    A. Zulehner, R. Wille, Make it reversible: efficient embedding of non-reversible functions, in Design, Automation and Test in Europe (2017)Google Scholar
  119. 119.
    A. Zulehner, R. Wille, Taking one-to-one mappings for granted: advanced logic design of encoder circuits, in Design, Automation and Test in Europe (2017)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Robert Wille
    • 1
    • 2
  • Krishnendu Chakrabarty
    • 3
  • Rolf Drechsler
    • 4
    • 5
  • Priyank Kalla
    • 6
  1. 1.Institute for Integrated CircuitsJohannes Kepler University LinzLinzAustria
  2. 2.Austria Cyber-Physical SystemsDFKI GmbHBremenGermany
  3. 3.Duke UniversityDurhamUSA
  4. 4.Group for Computer ArchitectureUniversity of BremenBremenGermany
  5. 5.Cyber-Physical SystemsDFKI GmbHBremenGermany
  6. 6.Department of Electrical and Computer EngineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations