An IoT-Based Architecture to Develop a Healthcare Smart Platform

  • Isaac Machorro-CanoEmail author
  • Uriel Ramos-Deonati
  • Giner Alor-Hernández
  • José Luis Sánchez-Cervantes
  • Cuauhtémoc Sánchez-Ramírez
  • Lisbeth Rodríguez-Mazahua
  • Mónica Guadalupe Segura-Ozuna
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 749)


Nowadays, obesity and hypertension are two global health problems that affect the quality of life of people and thus their work life. The Internet of Things (IoT) is a paradigm in which everyday objects are equipped with identification, detection, interconnection, and processing capabilities that allow them to communicate with one another and with other devices and services through the Internet to achieve some goal. The IoT great opportunities for monitoring, analyzing, diagnosing, controlling and providing treatment recommendations for chronic-degenerative diseases, such as obesity and hypertension. In this work, we design a smart healthcare platform architecture based on the IoT paradigm; the paper also discusses important literature associating obesity, hypertension, and other chronic-degenerative diseases with the applications of the IoT paradigm. Finally, to validate our architecture, we present the case study of an elderly patient suffering from overweight and hypertension.


Monitoring Obesity and hypertension IoT 



This work was supported by Tecnológico Nacional de México (TecNM) and sponsored by the National Council of Science and Technology (CONACYT), the Secretariat of Public Education (SEP) through PRODEP (Programa para el Desarrollo Profesional Docente) and the Sistema de Universidades Estatales de Oaxaca (SUNEO).


  1. 1.
    World Health Organization. Obesity and overweight (2017).
  2. 2.
    World Health Organization. WHO/ISH Hypertension guidelines (2017).
  3. 3.
    Li, L., Li, S., Zhao, S.: QoS-aware scheduling of services-oriented Internet of Things. IEEE Trans. Ind. Inf. 10, 1497–1505 (2014). doi: 10.1109/TII.2014.2306782 CrossRefGoogle Scholar
  4. 4.
    Xu, L.D., He, W., Li, S.: Internet of Things in industries: a survey. IEEE Trans. Ind. Inf. 10, 2233–2243 (2014). doi: 10.1109/TII.2014.2300753 CrossRefGoogle Scholar
  5. 5.
    Bhatt, Y., Bhatt, C.: Internet of Things in HealthCare. In: Bhatt, C., Dey, N., Ashour, A.S. (eds.) Internet of Things and Big Data Technologies for Next Generation Healthcare. SBD, vol. 23, pp. 13–33. Springer, Cham (2017). doi: 10.1007/978-3-319-49736-5_2 CrossRefGoogle Scholar
  6. 6.
    Krawczyk, B., Woźniak, M.: Hypertension type classification using hierarchical ensemble of one-class classifiers for imbalanced data. In: Bogdanova, A.M., Gjorgjevikj, D. (eds.) ICT Innovations 2014. AISC, vol. 311, pp. 341–349. Springer, Cham (2015). doi: 10.1007/978-3-319-09879-1_34 Google Scholar
  7. 7.
    Vazquez-Briseno, M., Navarro-Cota, C., Nieto-Hipolito,J.I., Jimenez-Garcia, E., Sanchez-Lopez, J.D.: A proposal for using the Internet of Things concept to increase children’s health awareness. In: 2012 22nd International Conference on Electrical Communications and Computers (CONIELECOMP), pp. 168–172 (2012). doi: 10.1109/CONIELECOMP.2012.6189903
  8. 8.
    Vilollonga, R., Lecube, A., Fort, J.M., Boleko, M.A., Hidalgo, M., Armengol, M.: Internet of Things and bariatric surgery follow-up: comparative study of standard and IoT follow-up. Minim. Invasive Ther. Inf. Healthcare 22, 304–311 (2013). doi: 10.3109/13645706.2013.779282 CrossRefGoogle Scholar
  9. 9.
    Mun Lee, B., Ouyang, J.: Application protocol adapted to health awareness for smart healthcare service. Adv. Sci. Technol. Lett. 43, 101–104 (2013). doi: 10.14257/astl.2013.43.21 Google Scholar
  10. 10.
    Zaragozá, I., Guixeres, J., Alcañiz, M., Cebolla, A., Saiz, J., Álvarez, J.: Ubiquitous monitoring and assessment of childhood obesity. Pers. Ubiquit. Comput. 17, 1147–1157 (2013). doi: 10.1007/s00779-012-0562-x CrossRefGoogle Scholar
  11. 11.
    Mun Lee, B., Ouyang, J.: Intelligent healthcare service by using collaborations between IoT personal health devices. Int. J. Bio-Science Bio-Technology 6, 155–164 (2014). doi: 10.14257/ijbsbt.2014.6.1.17 Google Scholar
  12. 12.
    Hiremath, S., Yang, G., Mankodiya, K.: Wearable Internet of Things: concept, architectural components and promises for person-centered healthcare. In: 2014 EAI 4th International Conference on Wireless Mobile Communication and Healthcare (Mobihealth), pp. 304–307 (2014). doi: 10.4108/icst.mobihealth.2014.257440
  13. 13.
    Vazquez, M., Jimenez, E., Nieto, J.I., Sanchez, J.D.D., Garcia, A., Torres, J.P.: Development of a mobile health architecture to prevent childhood obesity. IEEE Lat. Am. Trans. 13, 1520–1527 (2015). doi: 10.1109/TLA.2015.7112010 CrossRefGoogle Scholar
  14. 14.
    Kim, K.K., Logan, H.C., Young, E., Sabee, C.M.: Youth-centered design and usage results of the iN Touch mobile self-management program for overweight/obesity. Pers. Ubiquit. Comput. 19, 59–68 (2015). doi: 10.1007/s00779-014-0808-x CrossRefGoogle Scholar
  15. 15.
    Alloghani, M., Hussain, A., AI-Jumeily, D., Fergus, P., Abuelma’atti, O., Hamden, H.: A Mobile Health Monitoring Application for Obesity Management and Control Using the Intemet-of-Things, pp. 19–24. IEEE (2016). doi: 10.1109/ICDIPC.2016.7470785
  16. 16.
    Wibisono, G., Astawa, I.G.B.: Designing Machine-to-Machine (M2M) prototype system for weight loss program for obesity and overweight patients. In: 7th International Conference on Intelligent Systems, Modelling and Simulation, pp. 138–143 (2016). doi: 10.1109/ISMS.2016.52
  17. 17.
    Dobbins, C., Rawassizadeh, R., Momeni, E.: Detecting physical activity within lifelogs towards preventing obesity and aiding ambient assisted living. Neurocomputing 230, 1–23 (2016). doi: 10.1016/j.neucom.2016.02.088 Google Scholar
  18. 18.
    Shin, S.-A., Lee, N.-Y., Park, J.-H.: Empirical study of the IoT-learning for obese patients that require personal training. In: Park, J.J.(Jong Hyuk), Pan, Y., Yi, G., Loia, V. (eds.) Advances in Computer Science and Ubiquitous Computing. LNEE, vol. 421, pp. 1005–1012. Springer, Singapore (2017). doi: 10.1007/978-981-10-3023-9_156 CrossRefGoogle Scholar
  19. 19.
    Antonovici, D.A., Chiuachisan, I., Geman, O., Tomegea, A.: Acquisition and management of biomedical data using Internet of Things concepts. In: IEEE - 2014 International Symposium on Fundamentals of Electrical Engineering, pp. 1–4 (2014). doi: 10.1109/ISFEE.2014.7050625
  20. 20.
    Akutekwe, A., Seker, H.: A hybrid dynamic Bayesian network approach for modeling temporal associations of gene expressions for hypertension diagnosis. In: 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 804–807 (2014). doi: 10.1109/EMBC.2014.6943713
  21. 21.
    Deen, M.J.: Information and communications technologies for elderly ubiquitous healthcare in a smart home. Pers. Ubiquit. Comput. 19, 573–599 (2015). doi: 10.1007/s00779-015-0856-x CrossRefGoogle Scholar
  22. 22.
    Jeong, J.S., Han, O., You, Y.Y.: A design characteristics of smart healthcare system as the IoT application. Indian J. Sci. Technol. 9, 1–8 (2016). doi: 10.17485/ijst/2016/v9i37/102547 Google Scholar
  23. 23.
    Gupta, P.K., Maharaj, B.T., Malekian, R.: A novel and secure IoT based cloud centric architecture to perform predictive analysis of users activities in sustainable health centres. Multimedia Tools Appl. 76, 1–24 (2016). doi: 10.1007/s11042-016-4050-6 Google Scholar
  24. 24.
    Chen, M., Ma, Y., Song, J., Lai, C.F., Hu, B.: Smart clothing: connecting human with clouds and big data for sustainable health monitoring. Mob. Netw. Appl. 21, 825–845 (2016). doi: 10.1007/s11036-016-0745-1 CrossRefGoogle Scholar
  25. 25.
    Jung, H.: A conceptual framework for trajectory-based medical analytics with IoT contexts. J. Comput. Syst. Sci. 82, 610–626 (2016). doi: 10.1016/j.jcss.2015.10.007 MathSciNetCrossRefGoogle Scholar
  26. 26.
    Lake, D., Milito, R., Morrow, M., Vargheese, R.: Internet of Things: architectural framework for eHealth security. J. ICT, 3 & 4, 301–328 (2014). doi: 10.13052/jicts2245-800X.133
  27. 27.
    Zhang, H., Song, H.: Ubiquitous WSN for healthcare: recent advances and future prospects. IEEE IoT J. 4, 311–318 (2014). doi: 10.1109/JIOT.2014.2329462 Google Scholar
  28. 28.
    Santos, J., Rodrigues, J.P.C., Silva, B., Casal, J., Saleem, K., Denisov, V.: An IoT-based mobile gateway for intelligent personal assistants on mobile health environments. J. Netw. Comput. Appl. 71, 194–204 (2016). doi: 10.1016/j.jnca.2016.03.014 CrossRefGoogle Scholar
  29. 29.
    Hossain, M.S., Muhammad, G.: Cloud-assisted industrial Internet of Things (IIoT) – enabled framework for health monitoring. Comput. Netw. 101, 192–202 (2016). doi: 10.1016/j.comnet.2016.01.009 CrossRefGoogle Scholar
  30. 30.
    Jara, A.J., Zamora, M.A., Skarmeta, A.F.G.: An Internet of Things–based personal device for diabetes therapy management in ambient assisted living (AAL). Pers. Ubiquit. Comput. 15, 431–440 (2011). doi: 10.1007/s00779-010-0353-1 CrossRefGoogle Scholar
  31. 31.
    Paschou, M., Sakkopoulos, E., Sourla, E., Tsakalidis, A.: Health Internet of Things: metrics and methods for efficient data transfer. Simul. Model. Pract. Theor. 34, 186–199 (2013). doi: 10.1016/j.simpat.2012.08.002 CrossRefGoogle Scholar
  32. 32.
    Gia, T.N., Thanigaivelan, N.K., Rahmani, A.M., Westerlund, T., Liljeberg, P., Tenhunen, H.: Customizing 6lowpan networks towards internet-of-things based ubiquitous healthcare systems. In: NORCHIP, pp. 1–6. IEEE (2014). doi: 10.1109/NORCHIP.2014.7004716
  33. 33.
    Jung, E.Y., Kim, J., Chung, K.Y., Park, D.K.: Mobile healthcare application with EMR interoperability for diabetes patients. Cluster Comput. 17, 871–880 (2013). doi: 10.1007/s10586-013-0315-2 CrossRefGoogle Scholar
  34. 34.
    Hu, L., Ong, D.M., Zhu, X., Liu, Q., Song, E.: Enabling RFID technology for healthcare: application, architecture, and challenges. Telecommun. Syst. 58, 259–271 (2015). doi: 10.1007/s11235-014-9871-x CrossRefGoogle Scholar
  35. 35.
    Kumar, K.M.C.: Internet of fitness things – a move towards quantified health: concept, sensor-cloud network, protocols and a new methodology for OSA patients. In: 2015 IEEE Recent Advances in Intelligent Computational Systems (RAICS), pp. 364–369 (2015). doi: 10.1109/RAICS.2015.7488443
  36. 36.
    Ganzha, M., Paprzycki, M., Pawłowski, W., Szmeja, P., Wasielewska, K.: Semantic interoperability in the Internet of Things: an overview from the INTER-IoT perspective. J. Netw. Comput. Appl. 81, 1–23 (2016). doi: 10.1016/j.jnca.2016.08.007 Google Scholar
  37. 37.
    Raza, M., Hoa Le, M., Aslam, N., Hieu Le, C., Tam Le, N., Ly Le, T.: Telehealth Technology: Potentials, Challenges and Research Directions for Developing Countries. IFMBE Proceedings, pp. 233–236. Springer (2016)Google Scholar
  38. 38.
    Camara-Brito, J.M.: Trends in wireless communications towards 5G networks – the influence of e-health and IoT applications. In: International Multidisciplinary Conference on Computer and Energy Science (SpliTech), pp. 1–7 IEEE (2016). doi: 10.1109/SpliTech.2016.7555949
  39. 39.
    Ifrim, C., Pintilie, A.-M., Apostol, E., Dobre, C., Pop, F.: The art of advanced healthcare applications in big data and IoT systems. In: Mavromoustakis, C.X., Mastorakis, G., Dobre, C. (eds.) Advances in Mobile Cloud Computing and Big Data in the 5G Era. SBD, vol. 22, pp. 133–149. Springer, Cham (2017). doi: 10.1007/978-3-319-45145-9_6 CrossRefGoogle Scholar
  40. 40.
    Li, S., Xu, L.D., Zhao, S.: The Internet of Things: a survey. Inf. Syst. Front. 17, 243–259 (2015). doi: 10.1007/s10796-014-9492-7 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Isaac Machorro-Cano
    • 1
    Email author
  • Uriel Ramos-Deonati
    • 1
  • Giner Alor-Hernández
    • 1
  • José Luis Sánchez-Cervantes
    • 2
  • Cuauhtémoc Sánchez-Ramírez
    • 1
  • Lisbeth Rodríguez-Mazahua
    • 1
  • Mónica Guadalupe Segura-Ozuna
    • 3
  1. 1.Division of Research and Postgraduate StudiesInstituto Tecnológico de OrizabaOrizabaMexico
  2. 2.CONACYT - Instituto Tecnológico de OrizabaOrizabaMexico
  3. 3.Universidad del Papaloapan (UNPA)TuxtepecMexico

Personalised recommendations