Advertisement

Ultrasound Elastography of Thyroid Nodules

  • Ghobad AziziEmail author
  • Carl D. Malchoff
Chapter

Abstract

Elastography technologies provide a new dimension in the evaluation of thyroid nodules. B-mode ultrasound imaging creates visualization of thyroid nodules but has a low sensitivity for predicting malignancy. Strain and shear wave elastography are next-generation technologies in evaluating thyroid nodules. They investigate differences in the mechanical properties of structures by applying an external force and monitoring the deformation response. Recent studies have demonstrated that strain and shear wave elastography stratify the malignancy risk for thyroid nodules as a single variable and in conjunction with other B-mode ultrasound features. Elastography can be added to B-mode ultrasound examinations of thyroid nodules. These technologies may improve our ability to detect thyroid cancer and lead to fewer unnecessary fine needle aspiration biopsies and thyroid surgeries. However, more prospective studies are required to determine the precise value of these new technologies in specific thyroid nodule subgroups.

Keywords

Thyroid nodule Thyroid cancer Ultrasound B-mode Elastography FNAB Strain elastography Shear wave elastography Prospective study Surgical pathology 

Abbreviations

ARFI

Acoustic radiation force impulse

ES

Elastography score

FNAB

Fine needle aspiration biopsy

kPa

Kilopascals

m/s

Meters per second

NPV

Negative predictive value

PPV

Positive predictive value

PTC

Papillary thyroid cancer

ROI

Region of interest

SWE

Shear wave elastography

SWV

Shear wave velocity

US

Ultrasound

VTIQ

Virtual tissue imaging quantification

VTQ

Virtual touch quantification

Notes

Disclosure

The authors have no conflicts of interest to disclose.

References

  1. 1.
    Garra BS. Elastography: current status, future prospects, and making it work for you. Ultrasound Q. 2011;27(3):177–86.  https://doi.org/10.1097/RUQ.0b013e31822a2138.CrossRefPubMedGoogle Scholar
  2. 2.
    Ophir J, Céspedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging. 1991;13(2):111–34.CrossRefGoogle Scholar
  3. 3.
    Gharib H, Papini E, Paschke R, Duick DS, Valcavi R, Hegedüs L, Vitti P, AACE/AME/ETA Task Force on thyroid nodules. American Association of Clinical Endocrinologists, Associazione Medici Endocrinologi, and European Thyroid Association Medical guidelines for clinical practice for the diagnosis and management of thyroid nodules: executive summary of recommendations. Endocr Pract. 2010;16(3):468–75.CrossRefGoogle Scholar
  4. 4.
    Azizi G, Keller J, Lewis M, Puett D, Rivenbark K, Malchoff C. Performance of elastography for the evaluation of thyroid nodules: a prospective study. Thyroid. 2013;23(6):734–40.  https://doi.org/10.1089/thy.2012.0227.CrossRefPubMedGoogle Scholar
  5. 5.
    Friedrich-Rust M, Vorlaender C, Dietrich CF, Kratzer W, Blank W, Schuler A, Broja N, Cui XW, Herrmann E, Bojunga J. Evaluation of strain elastography for differentiation of thyroid nodules: results of a prospective degum multicenter study. Ultraschall Med. 2016;37(3):262–70.  https://doi.org/10.1055/s-0042-104647.CrossRefPubMedGoogle Scholar
  6. 6.
    Veyrieres JB, Albarel F, Lombard JV, Berbis J, Sebag F, Oliver C, Petit P. A threshold value in shear wave elastography to rule out malignant thyroid nodules: a reality? Eur J Radiol. 2012;81:3965–72.CrossRefGoogle Scholar
  7. 7.
    Xu JM, Xu XH, Xu HX, Zhang YF, Zhang J, Guo LH, Liu LN, Liu C, Zheng SG. Conventional US, US elasticity imaging, and acoustic radiation force impulse imaging for prediction of malignancy in thyroid nodules. Radiology. 2014;272(2):577–86.  https://doi.org/10.1148/radiol.14132438.CrossRefPubMedGoogle Scholar
  8. 8.
    Azizi G, Keller JM, Mayo ML, Piper K, Puett D, Earp KM, Malchoff CD. Thyroid nodules and shear wave elastography: a new tool in thyroid cancer detection. Ultrasound Med Biol. 2015;41(11):2855–65.  https://doi.org/10.1016/j.ultrasmedbio.2015.06.021.CrossRefPubMedGoogle Scholar
  9. 9.
    Zhang FJ, Han RL. The value of acoustic radiation force impulse (ARFI) in the differential diagnosis of thyroid nodules. Eur J Radiol. 2013;82(11):e686–90.  https://doi.org/10.1016/j.ejrad.2013.06.027.CrossRefPubMedGoogle Scholar
  10. 10.
    Goertz RS, Amann K, Heide R, Bernatik T, Neurath MF, Strobel D. An abdominal and thyroid status with acoustic radiation force impulse elastometry–a feasibility study: acoustic radiation force impulse elastometry of human organs. Eur J Radiol. 2011;80(3):e226–30.  https://doi.org/10.1016/j.ejrad.2010.09.025.CrossRefPubMedGoogle Scholar
  11. 11.
    Ianculescu V, Ciolovan LM, Dunant A, Vielh P, Mazouni C, Delaloge S, Dromain C, Blidaru A, Balleyguier C. Added value of virtual touch IQ shear wave elastography in the ultrasound assessment of breast lesions. Eur J Radiol. 2014;83(5):773–7.  https://doi.org/10.1016/j.ejrad.2014.01.021.CrossRefPubMedGoogle Scholar
  12. 12.
    Krouskop TA, Wheeler TM, Kallel F, Garra BS, Hall T. Elastic moduli of breast and prostate tissues under compression. Ultrason Imaging. 1998;20(4):260–74.CrossRefGoogle Scholar
  13. 13.
    Asteria C, Giovanardi A, Pizzocaro A, Cozzaglio L, Morabito A, Somalvico F, Zoppo A. US-elastography in the differential diagnosis of benign and malignant thyroid nodules. Thyroid. 2008;18(5):523–31.  https://doi.org/10.1089/thy.2007.0323.CrossRefPubMedGoogle Scholar
  14. 14.
    Johannessen JV, Sobrinho-Simões M. The origin and significance of thyroid psammoma bodies. Lab Investig. 1980;43(3):287–96.PubMedGoogle Scholar
  15. 15.
    Komolafe F. Radiological patterns and significance of thyroid calcification. Clin Radiol. 1981;32(5):571–5.CrossRefGoogle Scholar
  16. 16.
    Cooper DS, Tiamson E, Ladenson PW. Psammoma bodies in fine needle aspiration biopsies of benign thyroid nodules. Thyroidology. 1988;1:55–9.Google Scholar
  17. 17.
    Lazebnik RS. Whitepaper: tissue strain analytics virtual touch tissue imaging and quantification. Ultrasound, Mountain View: Siemens Medical Solutions, USA, Inc.; 2008.Google Scholar
  18. 18.
    Xing P, Wu L, Zhang C, Li S, Liu C, Wu C. Differentiation of benign from malignant thyroid lesions: calculation of the strain ratio on thyroid sonoelastography. J Ultrasound Med. 2011;30(5):663–9.CrossRefGoogle Scholar
  19. 19.
    Itoh A, Ueno E, Tohno E, Kamma H, Takahashi H, Shiina T, Yamakawa M, Matsumura T. Breast disease: clinical application of US elastography for diagnosis. Radiology. 2006;239(2):341–50.CrossRefGoogle Scholar
  20. 20.
    Rago T, Di Coscio G, Basolo F, Scutari M, Elisei R, Berti P, Miccoli P, Romani R, Faviana P, Pinchera A, Vitti P. Combined clinical, thyroid ultrasound and cytological features help to predict thyroid malignancy in follicular and Hupsilonrthle cell thyroid lesions: results from a series of 505 consecutive patients. Clin Endocrinol. 2007;66(1):13–20.Google Scholar
  21. 21.
    Rago T, Scutari M, Santini F, Loiacono V, Piaggi P, Di Coscio G, Basolo F, Berti P, Pinchera A, Vitti P. Real-time elastosonography: useful tool for refining the presurgical diagnosis in thyroid nodules with indeterminate or nondiagnostic cytology. J Clin Endocrinol Metab. 2010;95(12):5274–80.  https://doi.org/10.1210/jc.2010-0901.CrossRefPubMedGoogle Scholar
  22. 22.
    Benson J, Fan L. Tissue strain analytics, a complete ultrasound solution for elastography. https://www.cee.siemens.com/web/ua/ru/medecine/detection_diagnosis/ultrasaund/Tissue-Strain-Analytics/Documents/whitepaper_tissue_strain_pdf. Accessed 1 Dec 2012.
  23. 23.
    Bell J. Siemens announces FDA clearance of virtual touch elastography imaging. Siemens Healthcare USA. Siemens, 24 June 2013. Web. 27 Oct 2014. http://usa.healthcare.siemens.com/press/pressreleases/healthcare-news-2013-06-24-1/.
  24. 24.
    Bercoff J. SuperSonic imagine white paper: shear wave elastography. http://www.supersonicimagine.com/content/view/full/. Accessed 30 Oct 2012.
  25. 25.
    Sebag F, Vaillant-Lombard J, Berbis J, Griset V, Henry JF, Petit P, Oliver C. Shear wave elastography: a new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules. J Clin Endocrinol Metab. 2010;95:5281–8.CrossRefGoogle Scholar
  26. 26.
    Park SH, Kim SJ, Kim EK, Kim MJ, Son EJ, Kwak JY. Interobserver agreement in assessing the sonographic and elastographic features of malignant thyroid nodules. Am J Roentgenol. 2009;193:W416–23.CrossRefGoogle Scholar
  27. 27.
    Sporea I, Vlad M, Bota S, Sirli RL, Popescu A, Danila M, Sendroiu M, Zosin I. Thyroid stiffness assessment by acoustic radiation force impulse elastography (ARFI). Ultraschall Med. 2011;32(3):281–5.  https://doi.org/10.1055/s-0029-1246048.CrossRefPubMedGoogle Scholar
  28. 28.
    Liu BX, Xie XY, Liang JY, Zheng YL, Huang GL, Zhou LY, Wang Z, Xu M, Lu MD. Shear wave elastography versus real-time elastography on evaluation thyroid nodules: a preliminary study. Eur J Radiol. 2014;83(7):1135–43.  https://doi.org/10.1016/j.ejrad.2014.02.024.CrossRefPubMedGoogle Scholar
  29. 29.
    Bojunga J, Dauth N, Berner C, Meyer G, Holzer K, Voelkl L, Herrmann E, Schroeter H, Zeuzem S, Friedrich-Rust M. Acoustic radiation force impulse imaging for differentiation of thyroid nodules. PLoS One. 2012;7(8):e42735.  https://doi.org/10.1371/journal.pone.0042735.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Desmots F, Fakhry N, Mancini J, Reyre A, Vidal V, Jacquier A, Santini L, Moulin G, Varoquaux A. Shear wave elastography in head and neck lymph node assessment: image quality and diagnostic impact compared with B-mode and Doppler ultrasonography. Ultrasound Med Biol. 2016;42(2):387–98.  https://doi.org/10.1016/j.ultrasmedbio.2015.10.019.CrossRefPubMedGoogle Scholar
  31. 31.
    Choi YJ, Lee JH, Lim HK, Kim SY, Han MW, Cho KJ, Baek JH. Quantitative shear wave elastography in the evaluation of metastatic cervical lymph nodes. Ultrasound Med Biol. 2013;39(6):935–40.  https://doi.org/10.1016/j.ultrasmedbio.2012.12.009.CrossRefPubMedGoogle Scholar
  32. 32.
    Azizi G, Keller JM, Mayo ML, Piper K, Puett D, Earp KM, Malchoff CD. Shear wave elastography and cervical lymph nodes: predicting malignancy. Ultrasound Med Biol. 2016;42(6):1273–81.  https://doi.org/10.1016/j.ultrasmedbio.2016.01.012.CrossRefPubMedGoogle Scholar
  33. 33.
    Cheng KL, Choi YJ, Shim WH, Lee JH, Baek JH. Virtual touch tissue imaging quantification shear wave elastography: prospective assessment of cervical lymph nodes. Ultrasound Med Biol. 2016;42(2):378–86.  https://doi.org/10.1016/j.ultrasmedbio.2015.10.003.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Endocrinology, Wilmington EndocrinologyWilmingtonUSA
  2. 2.Internal Medicine and Neag Comprehensive Cancer Center, UConn HealthFarmingtonUSA

Personalised recommendations