Development of a Support System for Managing the Cyber Security of Information and Communication Environment of Transport

  • Valeriy Lakhno
  • Alexander PetrovEmail author
  • Anton Petrov
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 656)


The operation of critical computer systems (CCS) in industry, energy, transport and communications, etc. requires constant monitoring of cyber threats, as well as vulnerabilities in the technical components and the software. The information object cyber security (CS) operational management system and the formation of the protection methods rational sets model which is based on a morphological approach is developed. This model allows us to generate different variants of protection sets that are compliant with a critical computer system (CCS) of transport branch taking into account morphological matrices for each security perimeter prepared with the intelligent decision support system (DSS or intelligent decision support system – IDSS). It will find an optimal variant of the cyber security perimeter sets using an CCS that maximizes the correlation of a consolidated figure of “information security” (IS) to consolidated figure “costs”. A program set for IDSS in circuits of organizational-technical and operational management of the CCS security system is developed. It is proven that using the developed IDSS allows us to reduce the cost of developing an information security system and to shorten the time for informing some responsible individual about information security incidents.


Information security Information management Transport Decision support system Mathematical model 


  1. 1.
    Al Hadidi, M., Ibrahim, Y., Lakhno, V., Korchenko, A., Tereshchuk, A., Pereverzev, A.: Intelligent systems for monitoring and recognition of cyber attacks on information and communication systems of transport. Int. Rev. Comput. Softw. 11(12), 1167–1177 (2016)Google Scholar
  2. 2.
    Lakhno, V., Grabarev, A.: Improving the transport cyber security under destructive impacts on information and communication systems. Eastern-Eur. J. Enterp. Technol. 1/3(79), 4–11 (2016). doi: 10.15587/1729-4061.2016.60711 CrossRefGoogle Scholar
  3. 3.
    Dunn, W.: Practical Design of Safety-Critical Systems. Reliability Press, Cambridge (2002). ISBN 0971752702Google Scholar
  4. 4.
    El Hassani, A.A., El Kalam, A.A., Bouhoula, A., Abassi, R., Ouahman, A.A.: Integrity-OrBAC: a new model to preserve critical infrastructures integrity. Int. J. Inf. Secur. 14(4), 367–385 (2014). doi: 10.1007/s10207-014-0254-9 CrossRefGoogle Scholar
  5. 5.
    Zhang, Y., Wang, L., Sun, W., Green, R.C., Alam, M.: Distributed intrusion detection system in a multi-layer network architecture of smart grids. IEEE Trans. Smart Grid 2(4), 796–808 (2011). doi: 10.1109/tsg.2011.2159818 CrossRefGoogle Scholar
  6. 6.
    Al-Jarrah, O., Arafat, A.: Network intrusion detection system using attack behavior classification. In: 2014 5th International Conference on Information and Communication Systems (ICICS), pp. 1–6 (2014). doi: 10.1109/iacs.2014.6841978
  7. 7.
    Louvieris, P., Clewley, N., Liu, X.: Effects-based feature identification for network intrusion detection. Neurocomputing 121(9), 265–273 (2013). doi: 10.1016/j.neucom.2013.04.038 CrossRefGoogle Scholar
  8. 8.
    Lakhno, V.: Creation of the adaptive cyber threat detection system on the basis of fuzzy feature clustering. Eastern-Eur. J. Enterp. Technol. 2(9(80)), 18–25 (2016). doi: 10.15587/1729-4061.2016.66015 CrossRefGoogle Scholar
  9. 9.
    Khan, L., Awad, M., Thuraisingham, B.: A new intrusion detection system using support vector machines and hierarchical clustering. Int. J. Very Large Data Bases 16(4), 507–521 (2007). doi: 10.1007/s00778-006-0002-5 CrossRefGoogle Scholar
  10. 10.
    Cavusoglu, H., Srinivasan, R., Wei, T.Y.: Decision-theoretic and game-theoretic approaches to IT security investment. J. Manag. Inf. Syst. (ACySe) 25(2), 281–304 (2008)CrossRefGoogle Scholar
  11. 11.
    Chang, L.-Y., Lee, Z.-J.: Applying fuzzy expert system to information security risk assessment: a case study on an attendance system. In: 2013 International Conference on Fuzzy Theory and Its Applications (iFUZZY), pp. 346–351 (2013). doi: 10.1109/iFuzzy.2013.6825462
  12. 12.
    Atymtayeva, L., Kozhakhmet, K., Bortsov, G.: Building a knowledge base for expert system in information security. In: Soft Computing in Artificial Intelligence. Advances in Intelligent Systems and Computing, vol. 270, pp. 57–76 (2014). doi: 10.1007/978-3-319-05515-2_7
  13. 13.
    Kanatov, M., Atymtayeva, L., Yagaliyeva, B.: Expert systems for information security management and audit. Implementation phase issues. In: Joint 7th International Conference on Soft Computing and Intelligent Systems (SCIS) and 15th International Symposium on Advanced Intelligent Systems (ISIS), 3–6 December 2014, pp. 896–900 (2014). doi: 10.1109/SCIS-ISIS.2014.7044702
  14. 14.
    Yang, Y.P.O., Shieh, H.M., Tzeng, G.H.: A VIKOR technique based on DEMATEL and ANP for information security risk control assessment. Inf. Sci. 232, 482–500 (2013). CrossRefGoogle Scholar
  15. 15.
    Pawar, N.: Intrusion detection in computer network using genetic algorithm approach: a survey. Int. J. Adv. Eng. Technol. 6(2), 730–736 (2013)Google Scholar
  16. 16.
    Linda, O., Manic, M., Vollmer, T., Wright, J.: Fuzzy logic based anomaly detection for embedded network security cyber sensor. In: IEEE Symposium on Computational Intelligence in Cyber Security (CICS), 11–15 April 2011, pp. 202–209 (2011). doi: 10.1109/cicybs.2011.5949392
  17. 17.
    Mashkina, I.V., Guzairov, M.B., Vasilyev, V.I., Tuliganova, L.R., Konovalov, A.S.: Issues of information security control in virtualization segment of company information system. In: XIX IEEE International Conference on Soft Computing and Measurements, pp. 161–163 (2016). doi: 10.1109/SCM.2016.7519715
  18. 18.
    Oglaza, A., Laborde, R., Zarate, P.: Authorization policies: using decision support system for context-aware protection of user’s private data. In: 12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), 16–18 July 2013 (2013). doi: 10.1109/TrustCom.2013.202
  19. 19.
    Lakhno, V., Kazmirchuk, S., Kovalenko, Y., Myrutenko, L., Zhmurko, T.: Design of adaptive system of detection of cyber-attacks, based on the model of logical procedures and the coverage matrices of features. Eastern-Eur. J. Enterp. Technol. 3/9(81), 30–38 (2016). doi: 10.15587/1729-4061.2016.71769 CrossRefGoogle Scholar
  20. 20.
    Gamal, M.M., Hasan, B., Hegazy, A.F.: A security analysis framework powered by an expert system. Int. J. Comput. Sci. Secur. (IJCSS) 4(6), 505–527 (2011)Google Scholar
  21. 21.
    Goztepe, K.: Designing fuzzy rule based expert system for cyber security. Int. J. Inf. Secur. Sci. 1(1), 13–19 (2012)Google Scholar
  22. 22.
    Gutzwiller, S.R., Hunt, S.M., Lange, D.S.: A task analysis toward characterizing cyber-cognitive situation awareness (CCSA) in cyber defense analysts. In: IEEE International Multi-disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA), 21–25 March 2016. doi: 10.1109/COGSIMA.2016.7497780
  23. 23.
    Reesa, L.P., Deanea, J.K., Rakesa, T.R., Bakerb, W.H.: Decision support for cybersecurity risk planning. Decis. Support Syst. 51(3), 493–505 (2011). doi: 10.1016/j.dss.2011.02.013 CrossRefGoogle Scholar
  24. 24.
    Paliwal, S., Gupta, R.: Denial-of-Service, probing & remote to user (R2L) attack detection using genetic algorithm. Int. J. Comput. Appl. 60(19), 57–62 (2012)Google Scholar
  25. 25.
    Ericsson, N.G.: Cyber security and power system communication-essential parts of a smart grid infrastructure. IEEE Trans. Power Deliv. 25(3), 1501–1507 (2010). doi: 10.1109/tpwrd.2010.2046654 CrossRefGoogle Scholar
  26. 26.
    Storchak, A.: Model assessment of information security based on multi-step process driven decision. Spec. Telecommun. Syst. Inf. Protect. 2(24), 112–117 (2013)Google Scholar
  27. 27.
    Atymtayeva, L., Kozhakhmet, K., Bortsova, G.: Building a knowledge base for expert system in information security. In: Soft Computing in Artificial Intelligence. Advances in Intelligent Systems and Computing, vol. 270, pp. 57–76 (2014). doi: 10.1007/978-3-319-05515-2_7
  28. 28.
    Valenzuela, J., Wang, J., Bissinger, N.: Real-time intrusion detection in power system operations. IEEE Trans. Power Syst. 28(2), 1052–1062 (2013). doi: 10.1109/TPWRS.2012.2224144 CrossRefGoogle Scholar
  29. 29.
    Lakhno, V.A., Kravchuk, P.U., Mekhed, D.B., Mohylnyi, H.A., Donchenko, V.U.: Development of a support system for managing the cyber protection of an information object. J. Theor. Appl. Inf. Technol. 95(6), 1263–1272 (2017)Google Scholar
  30. 30.
    Kritikos, K., Massonet, P.: Security-based adaptation of multi-cloud applications. In: Data Privacy Management, and Security Assurance. Lecture Notes in Computer Science, vol. 9481, pp. 47–64 (2016). doi: 10.1007/978-3-319-29883-2_4
  31. 31.
    Burachok, V.: Algorithm for evaluating the degree of protection of special information and telecommunication systems. Inf. Secur. 3, 19–27 (2010)Google Scholar
  32. 32.
    Petrov, O., Borowik, B., Karpinskyy, M., Korchenko, O., Lakhno, V.: Immune and Defensive Corporate Systems with Intellectual Identification of Threats. Śląska Oficyna Drukarska, Pszczyna (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.European UniversityKievUkraine
  2. 2.AGH University of Science and TechnologyKrakowPoland
  3. 3.National Aviation UniversityKievUkraine

Personalised recommendations